• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

完全非線形放物型方程式の粘性解理論の新展開

Research Project

Project/Area Number 20K14340
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionThe University of Tokyo

Principal Investigator

舘山 翔太  東京大学, 大学院数理科学研究科, 特別研究員 (30868435)

Project Period (FY) 2020-04-01 – 2023-03-31
Project Status Discontinued (Fiscal Year 2022)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2023: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords粘性解 / 微分方程式 / 完全非線形偏微分方程式 / 放物型方程式 / 正則性 / 函数方程式論 / 関数方程式
Outline of Research at the Start

本研究では一階微分項に非有界係数を持ち, 非斉次項がルベーグ空間Lp,q(空間指数をp, 時間指数をqとする)に属する完全非線形放物型方程式に対する粘性解の正則性(微分可能性や可積分性)理論及び一意性定理を構築及び整備する. 偏微分方程式論において, 弱解の正則性理論や一意性定理は重要な基盤的研究対象である. しかし, 先行研究では一階微分項係数が不連続・非有界で特異点を持つ非発散型の放物型方程式に関する粘性解理論の研究はほぼ皆無であり, Lp,q関数を非斉次項に持つ放物型方程式に対して通常の粘性解理論を本質的に適用できない. 既存の証明法ではギャップが大きいためその解決を目指す.

Outline of Annual Research Achievements

本研究の目的は、微分幾何学、数理ファイナンスを含む最適制御理論や確率微分ゲーム理論等で発展してきた粘性解理論に関して、非斉次項(外力項)が非等方性をもつルベーグ空間Lp,q(空間指数をp, 時間指数をqとする)に属する完全非線形一様放物型偏微分方程式に対する粘性解の存在及び最大値原理等の基礎理論を構築・整備することである。令和4年度は、前年度と同様にLp,q函数を非斉次項として持つ完全非線形放物型方程式に対する粘性解の存在、安定性及び正則性(C1,α評価及びW2,1,p,q評価)を考察した。さらに、これらの応用として数理ファイナンスや微分ゲームにおける近似最適制御の構成法を考察した。具体的 に、A. I. Nazarov(arXiv:1507.05232, 2015年)によって示された線形方程式の強解に対する最大値原理、及びDong-Krylov(Calculus of Variations, 2019 年)による強解に対するW2,1,p,q評価を応用して、非斉次項がLp,q空間に属するプッチ方程式の粘性解の存在、及び最大値原理を考察した。さらに、同様な方程式に対するC1,α評価及びW2,1,p,q評価については、単純化された極限方程式として、二階微分項に関して凸性を持つ方程式を考え、その解の評価を元の方程式に引き戻す方法を検討した。将来的にこれらの評価を用いて、近似最適制御を含む、微分ゲームや数理ファイナンスへ応用するために既存の結果を精査した。

Report

(3 results)
  • 2022 Annual Research Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (3 results)

All 2021

All Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (1 results)

  • [Journal Article] Holder gradient estimates on L^p-viscosity solutions of fully nonlinear parabolic equations with VMO coefficients2021

    • Author(s)
      Tateyama Shota
    • Journal Title

      Partial Differential Equations and Applications

      Volume: 2 Issue: 6

    • DOI

      10.1007/s42985-021-00133-4

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] On L^p-viscosity solutions of parabolic bilateral obstacle problems with unbounded ingredients2021

    • Author(s)
      Tateyama Shota
    • Journal Title

      Journal of Differential Equations

      Volume: 296 Pages: 724-758

    • DOI

      10.1016/j.jde.2021.06.015

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Presentation] H\"oder gradient estimates on Lp-viscosity solutions of fully nonlinear parabolic equations with VMO coefficients2021

    • Author(s)
      舘山翔太
    • Organizer
      日本数学会2021年度年会
    • Related Report
      2020 Research-status Report

URL: 

Published: 2020-04-28   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi