• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of properties of solutions to geometric higher order variational problems

Research Project

Project/Area Number 20K14341
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionTokyo Institute of Technology

Principal Investigator

Miura Tatsuya  東京工業大学, 理学院, 准教授 (40838744)

Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2023: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2022: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2021: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Keywords幾何学的変分問題 / 高階問題 / 弾性曲線 / 弾性流 / p-弾性曲線 / 極小曲面 / Topping 予想 / 距離関数 / 曲げエネルギー / エラスティカ / p-エラスティカ / 弾性結び目 / Willmore エネルギー / 曲率 / 平均曲率 / 幾何学的不等式 / 変分法 / 変分問題 / 弾性エネルギー
Outline of Research at the Start

曲線や曲面の「曲がり具合」を測る量として曲げエネルギーと呼ばれる量がある.適当な曲線もしくは曲面のクラスの中でこのような曲げエネルギーを最小化する問題を考えると,その解の形状は,下敷きのたわみ方や赤血球の凹みなど,現実の様々な物体の形状をよく再現することが知られている.本研究ではこのような数理モデルに対し,数学解析により解の性質,特に一意性や形状に関する情報を調べることを目標とする.

Outline of Final Research Achievements

Among geometric variational problems, we studied problems that include higher-order derivatives such as curvature in their energy, focusing on the properties of the solutions. In particular, we focused on the problem of elastic curves, which is a variational problem of the bending energy that measures how a curve bends, and obtained results such as geometric inequalities, classification theorems for critical points, and analysis of the behavior of gradient flows.
In the process, we also worked extensively on related problems of geometric analysis. We partly solved the Topping conjecture on the relation between the diameter of a surface and its mean curvature, and found an application to the theory of minimal surfaces. We also proved a general structure theorem on the singular set of the distance function.

Academic Significance and Societal Importance of the Research Achievements

弾性曲線の研究は Daniel Bernoulli および Leonhard Euler により 18 世紀に創始されたものであり、高階幾何学的変分問題の最も基本的な例として純粋数学的に重要であるのみならず、弾性棒の形状を中心とした物理現象の解析に直接適用可能であることや、画像処理などの応用分野においても重要な役割を果たすことが知られている。このような古典的問題を含む様々な幾何解析の問題に対し、未解決問題の解決を含む種々の新しい成果が得られたことは、学術的にも社会的にも意義深いものと考えられる。

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (45 results)

All 2024 2023 2022 2021 2020 Other

All Int'l Joint Research (2 results) Journal Article (12 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 12 results,  Open Access: 3 results) Presentation (31 results) (of which Int'l Joint Research: 14 results,  Invited: 28 results)

  • [Int'l Joint Research] Freiburg University/Ulm University(ドイツ)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] マックスプランク数理科学研究所(ドイツ)

    • Related Report
      2020 Research-status Report
  • [Journal Article] Migrating elastic flows2024

    • Author(s)
      Kemmochi Tomoya、Miura Tatsuya
    • Journal Title

      Journal de Mathematiques Pures et Appliquees

      Volume: 185 Pages: 47-62

    • DOI

      10.1016/j.matpur.2024.02.003

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Delta-convex structure of the singular set of distance functions2024

    • Author(s)
      Tatsuya Miura; Minoru Tanaka
    • Journal Title

      Communications on Pure and Applied Mathematics

      Volume: - Issue: 9 Pages: 3631-3669

    • DOI

      10.1002/cpa.22195

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Complete classification of planar p-elasticae2024

    • Author(s)
      Miura Tatsuya、Yoshizawa Kensuke
    • Journal Title

      Annali di Matematica Pura ed Applicata (1923 -)

      Volume: -

    • DOI

      10.1007/s10231-024-01445-z

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] General rigidity principles for stable and minimal elastic curves2024

    • Author(s)
      Miura Tatsuya、Yoshizawa Kensuke
    • Journal Title

      Journal fur die reine und angewandte Mathematik (Crelles Journal)

      Volume: 810 Issue: 0

    • DOI

      10.1515/crelle-2024-0018

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Li-Yau type inequality for curves in any codimension2023

    • Author(s)
      Tatsuya Miura
    • Journal Title

      Calculus of Variations and Partial Differential Equations

      Volume: 62 Issue: 8

    • DOI

      10.1007/s00526-023-02559-7

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Pinned planar p-elasticae2023

    • Author(s)
      Tatsuya Miura; Kensuke Yoshizawa
    • Journal Title

      Indiana University Mathematics Journal

      Volume: -

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Optimal thresholds for preserving embeddedness of elastic flows2023

    • Author(s)
      Tatsuya Miura; Marius Muller; Fabian Rupp
    • Journal Title

      American Journal of Mathematics

      Volume: -

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] A diameter bound for compact surfaces and the Plateau-Douglas problem2022

    • Author(s)
      Miura Tatsuya
    • Journal Title

      ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE

      Volume: 23 Pages: 1707-1721

    • DOI

      10.2422/2036-2145.202011_006

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Geometric inequalities involving mean curvature for closed surfaces2021

    • Author(s)
      Miura Tatsuya
    • Journal Title

      Selecta Mathematica

      Volume: 27 Issue: 5 Pages: 1-24

    • DOI

      10.1007/s00029-021-00696-5

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] On the Isoperimetric Inequality and Surface Diffusion Flow for Multiply Winding Curves2021

    • Author(s)
      Miura Tatsuya、Okabe Shinya
    • Journal Title

      Archive for Rational Mechanics and Analysis

      Volume: 239 Issue: 2 Pages: 1111-1129

    • DOI

      10.1007/s00205-020-01591-7

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Sharp boundary ε-regularity of optimal transport maps2021

    • Author(s)
      Miura Tatsuya、Otto Felix
    • Journal Title

      Advances in Mathematics

      Volume: 381 Pages: 107603-107603

    • DOI

      10.1016/j.aim.2021.107603

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Polar tangential angles and free elasticae2021

    • Author(s)
      Miura Tatsuya
    • Journal Title

      Mathematics in Engineering

      Volume: 3 Issue: 4 Pages: 1-12

    • DOI

      10.3934/mine.2021034

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Migrating elastic flows2024

    • Author(s)
      三浦達哉
    • Organizer
      MATRIX-RIMS Tandem Workshop: Evolutionary partial differential equations and applications
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Stabilization phenomenon in p-elastica theory2024

    • Author(s)
      三浦達哉
    • Organizer
      リーマン幾何と幾何解析
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Delta-convex structure of the singular set of distance functions2024

    • Author(s)
      三浦達哉
    • Organizer
      松山解析セミナー 2024
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Delta-convex structure of the singular set of distance functions2024

    • Author(s)
      三浦達哉
    • Organizer
      2024 Japan-Korea Workshop on Nonlinear PDEs and Its Applications
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Classification and stability theory of planar p-elasticae2023

    • Author(s)
      三浦達哉
    • Organizer
      Euro-Japanese Conference on Nonlinear Diffusion
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Migrating elastic flows2023

    • Author(s)
      剱持智哉; 三浦達哉
    • Organizer
      日本数学会 2023年度秋季総合分科会
    • Related Report
      2023 Annual Research Report
  • [Presentation] Optimal thresholds for preserving embeddedness of elastic flows2023

    • Author(s)
      三浦達哉; Marius Muller; Fabian Rupp
    • Organizer
      日本数学会 2023年度秋季総合分科会
    • Related Report
      2023 Annual Research Report
  • [Presentation] Complete classification of planar p-elasticae2023

    • Author(s)
      三浦達哉; 吉澤研介
    • Organizer
      Geometric Theory of Optimal Control
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] On the fine structure of the singular set of distance functions2023

    • Author(s)
      三浦達哉
    • Organizer
      第40回九州における偏微分方程式研究集会
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Complete classification of planar p-elasticae2023

    • Author(s)
      三浦達哉, 吉澤研介
    • Organizer
      日本数学会2023年度年会
    • Related Report
      2022 Research-status Report
  • [Presentation] On the Plateau-Douglas problem and Topping's diameter conjecture2022

    • Author(s)
      三浦達哉
    • Organizer
      部分多様体論と幾何解析の新展開
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Li-Yau type inequality for curves and applications2022

    • Author(s)
      三浦達哉
    • Organizer
      Workshop on Non-compact Variational Problems and Related Topics
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Euler's elastica: Old and new2022

    • Author(s)
      三浦達哉
    • Organizer
      MSI Colloquium 2022
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Topping の直径予想について2021

    • Author(s)
      三浦達哉
    • Organizer
      東工大幾何セミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] 曲がる物体の数学解析2021

    • Author(s)
      三浦達哉
    • Organizer
      ロボティクス・メカトロニクス 講演会 2021 in Osaka
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] 曲線の曲げエネルギーと自己交叉2021

    • Author(s)
      三浦達哉
    • Organizer
      筑波大学微分幾何学セミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Li-Yau type inequality for curves and applications2021

    • Author(s)
      三浦達哉
    • Organizer
      解析学火曜セミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Li-Yau type inequality for curves and applications2021

    • Author(s)
      三浦達哉
    • Organizer
      Asia-Pacific Analysis and PDE Seminar
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Variational analysis of self-intersecting elastic curves2021

    • Author(s)
      三浦達哉
    • Organizer
      15th International Conference on Free Boundary Problems
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Optimal thresholds for preserving embeddedness of elastic flows2021

    • Author(s)
      三浦達哉
    • Organizer
      RIMS研究集会(公開型)「発展方程式の広がり: 理論的基礎から実践的応用まで」
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Li-Yau type inequality for curves and applications2021

    • Author(s)
      三浦達哉
    • Organizer
      東北大学 応用数理解析セミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] A diameter bound for compact surfaces and the Plateau-Douglas problem2021

    • Author(s)
      三浦達哉
    • Organizer
      楕円型・放物型微分方程式研究集会
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Variational analysis of self-intersecting elastic curves2021

    • Author(s)
      三浦達哉
    • Organizer
      微分方程式の総合的研究
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] 軸対称曲面に対する Topping 予想の証明2021

    • Author(s)
      三浦達哉
    • Organizer
      第11回室蘭非線形解析研究会
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] A variational approach to boundary regularity of optimal transport maps2021

    • Author(s)
      三浦達哉
    • Organizer
      Arbeitsgemeinschaft ANGEWANDTE ANALYSIS
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 曲げエネルギーと曲線の形2021

    • Author(s)
      三浦達哉
    • Organizer
      令和2(2020)年度育志賞研究発表会
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] On the isoperimetric inequality and surface diffusion flow for multiply winding curves2020

    • Author(s)
      三浦達哉
    • Organizer
      Lisbon WADE seminar
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] A nonexistence theorem in the Plateau-Douglas problem2020

    • Author(s)
      三浦達哉
    • Organizer
      Surface and Interface Dynamics
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On Topping's conjecture and minimal surfaces2020

    • Author(s)
      三浦達哉
    • Organizer
      応用解析研究会
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] On the isoperimetric inequality and surface diffusion flow for multiply winding curves2020

    • Author(s)
      三浦達哉
    • Organizer
      京都大学 NLPDE セミナー
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] On the isoperimetric inequality and surface diffusion flow for multiply winding curves2020

    • Author(s)
      三浦達哉
    • Organizer
      2020 Seoul-Tokyo Conference - Partial Differential Equations -
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi