Project/Area Number |
20K14363
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 12040:Applied mathematics and statistics-related
|
Research Institution | Hiroshima University |
Principal Investigator |
Oda Ryoya 広島大学, 先進理工系科学研究科(理), 助教 (10853682)
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2022: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2021: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2020: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | 多変量モデル / モデル選択 / 一致性 / 高次元 / 変数選択 / 高次元漸近理論 / 変数選択法 / 多変量解析 / 多変量線形回帰 |
Outline of Research at the Start |
本研究の目的は, 多変量モデルにおいて, 変数の次元数が標本数を超えた場合も含んでいる高次元大標本データに対して良い性質をもつ変数選択規準を構築することである. 特に, 変数の個数が標本数を超えても実行可能な変数増減法の下で, 真の変数を選択する確率が漸近的に1となる性質である一致性をもつ変数選択規準を構築する. 目的を達成するために, まず多変量モデルの1つである多変量線形回帰モデルにおいて, 標本数は無限大だが説明変数だけでなく目的変数も標本数を超えて無限大としてよい漸近理論により一致性を評価する. 次に, 他の多変量モデルにおける変数選択規準も構築していく.
|
Outline of Final Research Achievements |
The aim of this study is to propose a variable selection criterion with good properties for high-dimensional and large-sample data in multivariate models, including cases where the number of dimensions of the variables exceeds the sample size. In particular, we propose a criterion with consistency, which is the property that the probability of selecting the true variable is asymptotically one under a high-dimensional setting where the number of variables may exceed the sample size. In order to achieve the aim, we evaluate the consistency in multivariate models under the high-dimensional asymptotic theory, in which the sample size is infinite but the number of variables may be infinite, and propose a variable selection method with consistency.
|
Academic Significance and Societal Importance of the Research Achievements |
近年では高次元データの使用は頻繁にされるため, そのような高次元データに対する統計分析手法の開発は重要である. 本研究により提案された変数選択手法は高次元データに対しても良い性質をもちかつ計算も高速であるため, リーズナブルな手法であると考えられる.
|