Closing in on the ultimate Dark Matter limits forecast by the Fermi Gamma-Ray Space Telescope
Project/Area Number |
20K14463
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 15010:Theoretical studies related to particle-, nuclear-, cosmic ray and astro-physics
|
Research Institution | The University of Tokyo |
Principal Investigator |
|
Project Period (FY) |
2020-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | dark matter / pulsars / Dark matter / Gamma rays / Galactic center / CTA / Fermi GeV excess / Pulsars / Galactic Center / gamma rays / cosmic rays / Dark Matter Limits |
Outline of Research at the Start |
An intriguing signal of excess gamma ray emission has been reported from the Galactic center in Fermi data. We will unravel that Fermi data from the Galactic center region has significant sensitivity to uncharted parameter space for dark matter particles in the GeV mass scale. A discovery of dark matter emission would be a major breakthrough, but even null results will provide the strongest limits on the dark matter annihilation cross section and will significantly deepen our understanding of dark matter in the Universe.
|
Outline of Final Research Achievements |
(a) I used multi-messenger cosmic ray data to impose strong conservative constraints on super-heavy dark matter particles [JCAP 01 (2020) 003].(b) I used radio observations to impose the current most stringent constraints on microelectronvolt-scale axion dark matter particles [Phys.Rev.Lett. 125 (2020) 17, 171301].(c) I used the revolutionary astrophysical background model created in Macias+(2018) to obtain the strongest constraints in the literature on gigaelectronvolt-scale dark matter particles in the literature [Phys.Rev.D 102 (2020) 4, 043012].(d) I demonstrated that the upcoming Cherenkov Telescope Array will be the world’s most sensitive instrument to search Wino dark matter particles [Phys.Rev.D 103 (2021) 2, 023011](e) In [ MNRAS. 509 (2021) 1, L11-L16], I used INTEGRAL satellite data to show that the so-called positron excess was in fact not due to dark matter emission. Instead, it was related to the physics of the stars in the Galactic bulge.
|
Academic Significance and Societal Importance of the Research Achievements |
予想される背景を超えた興味深い天体物理学的信号がさまざまな望遠鏡で観測されており、暗黒物質の起源を持っている可能性があります。 天体物理学的過剰には、フェルミガンマ線宇宙望遠鏡によって検出された銀河中心GeVガンマ線過剰、AMS反陽子および陽電子過剰、および511X線ラインが含まれます。 このプロジェクトは、これらの過剰を解決するための手段を調査し、最終的な解決策への明確な道を提供しました。
|
Report
(3 results)
Research Products
(21 results)