Project/Area Number |
20K14470
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 15010:Theoretical studies related to particle-, nuclear-, cosmic ray and astro-physics
|
Research Institution | Keio University |
Principal Investigator |
楊 廸倫 慶應義塾大学, 理工学研究科(矢上), 助教 (90770230)
|
Project Period (FY) |
2020-04-01 – 2021-03-31
|
Project Status |
Discontinued (Fiscal Year 2020)
|
Budget Amount *help |
¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2023: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2022: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
|
Keywords | quantum kinetic theory / quark gluon plasma / chiral anomaly / heavy ion collisions / spin polarization / Quantum chromodynamics / Heavy ion collisions / Quark gluon plasmas / Chiral anomaly / Transport theory |
Outline of Research at the Start |
The research aims at understanding the transport properties of elementary particles like quarks and gluons such as their diffusion of charges and polarization of spins in a rotating plasma phase created in heavy-ion-collision experiments. In such a system, the strongest fluid vorticity in our universe could be generated in the subatomic scale, which yields the polarization of quarks and gluons via quantum effects such as the chiral anomaly and spin-orbit interaction. This research may reveal detailed mechanisms and unexpected phenomena in relativistic spintronics in subatomic swirls.
|
Outline of Annual Research Achievements |
As mentioned in the proposal, we aim at exploring how the chiral anomaly, spin-orbit interaction, and related quantum effects affect “the intertwined charge/spin transport of quark gluon plasma (QGP) and of the pre-equilibrium phase in heavy ion collisions. One of the important purposes is to understand how the spin of quarks and also of gluons are dynamically polarized by vortical or electromagnetic fields and their contributions to experimental observables.
To track dynamical spin polarization particularly triggered by the collisional processes with spin-orbit interaction, it is necessary to modify the standard kinetic theory. By utilizing the Wigner-function approach, we have derived a generic formalism of the quantum kinetic theory (QKT) for massive fermions with quantum corrections in the collision term characterized by self energies, which paves the way to study dynamical spin polarization of a strange quark traversing the QGP. Such a collision term contains the quantum correction led by self-energy gradients, from which the spin polarization could be induced by space-time inhomogeneity of the medium such as local vorticity, as the generalization for side-jump corrections upon massless fermions in the previously derived chiral kinetic theory. In addition to the study of fermions, we have also constructed the QKT for photons, which could be directly generalized to that for weakly coupled gluons. Moreover, we have studied how local vorticity could affect not only spin polarization of hadrons but also the yields for hadrons with different spins.
|