Project/Area Number |
20K14613
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 18010:Mechanics of materials and materials-related
|
Research Institution | Tokyo University of Science |
Principal Investigator |
Arai Yutaro 東京理科大学, 先進工学部マテリアル創成工学科, 助教 (70844439)
|
Project Period (FY) |
2020-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2021: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2020: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
|
Keywords | ハイエントロピーセラミックス / セラミックス基複合材料 / 耐熱材料 / セラミックス複合材料 / 計算熱力学 / 溶融含浸 / 耐熱複合材料 / 熱力学データベース |
Outline of Research at the Start |
2000℃酸化雰囲気で使用できる新規構造材料として材料組織を複雑にすることで熱力学的に化学反応を抑制する機構を備えた炭素繊維強化耐熱ハイエントロピーセラミックス複合材料(C/RHECs)を作製する。C/RHECsは複数種の元素から構成される複雑な組成を有するため、熱力学と情報科学の融合である熱力学計算を積極的に取り入れた材料設計の指針及び評価手法を提案する。
|
Outline of Final Research Achievements |
Carbon fiber contained refractory high entropy ceramic matrix composites (hereafter denoted as C/RHECs) were successfully fabricated by alloy melt infiltration method. Compositions of alloys used for melt infiltration was designed by using thermodynamic calculation (calculation phase diagram). Arc-wind tunnel test was conducted to expose C/RHECs at 2000oC in oxidizing atmosphere and revealed that the surface of C/RHECs was covered by oxides with the complex composition and oxides probably acted as a barrier for oxygen diffusion. Since oxidation rate, which was defined as the ration of thickness of oxides and exposure time, was suppressed compared to that for conventional materials. The concept proposed in this study was proven correct and it will be a design guideline for the development of advanced heat resistant materials.
|
Academic Significance and Societal Importance of the Research Achievements |
従来耐熱材料の開発は高融点材料の探索と酸化する環境で材料自身の初期の参加により被膜を形成する材料を組み合わせることが多用されてきた。これらは試行錯誤の連続であり,1つの材料を生み出すために無数の実験を繰り返す必要があった。本提案では熱力学計算による材料設計を取り入れた材料プロセスにより2000℃酸化雰囲気で使用可能な材料を創成した。情報科学を材料プロセスに取り入れたことで必要な実験量が激減し,2年という短期間で材料プロセスの確立と目的の材料の実現の双方が可能となった。これは時間と資源の大幅な削減であり,持続可能な次世代材料創成プロセスとして応用可能な成果である。
|