Nano three-dimensional laser machining by intensity distribution, position, and orientation control of a photonic nanojet
Project/Area Number |
20K14627
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 18020:Manufacturing and production engineering-related
|
Research Institution | Osaka University |
Principal Investigator |
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
|
Keywords | レーザー加工 / 光強度分布 / 電磁場シミュレーション / レーザ微細加工 / 強度分布制御 / フォトニックナノジェット / 空間光変調器 / インプロセス計測 / 衝撃波 |
Outline of Research at the Start |
フォトニックナノジェットという従来の集光光学系では得られない特徴をもった光ビームを用いて,ナノメートルスケールの3次元レーザ加工技術を確立する. フォトニックナノジェットを発生させるためのレーザ光の位相を制御することによって,フォトニックナノジェットの強度分布や姿勢を非常に高い分解能および高い自由度で制御する.これによって,単なる集光ビームを用いたレーザ加工とは異なる,高分解能かつ非常に自由度の高い加工を実現し,特異な機能をもつ表面微細構造の作製に応用する.
|
Outline of Final Research Achievements |
In this study, we investigated a method to control the intensity distribution, position, and orientation of a unique optical beam called a photonic nanojet in order to establish a laser machining method with high resolution and high flexibility for fabricating microstructures on the sub-micrometer scale. By clarifying the generation mechanism of photonic nanojets and introducing a control method based on this mechanism, it is possible to control the beam diameter with a high resolution in the sub-micrometer range and also to control the position and orientation with a high flexibility. The results obtained in this research are expected to be applied to further development of laser machining and precision measurement.
|
Academic Significance and Societal Importance of the Research Achievements |
サブマイクロメートルスケールの光ビームの制御手法の確立により,従来のレーザ加工の分解能や自由度が向上した.また,このビーム制御技術は本研究課題で対象としたレーザ加工だけでなく,精密計測の分野にも応用可能であり,波及効果が大きい.このように,サブマイクロメートルスケールの加工技術を確立することで,従来では作製が非常に困難とされていた機能性構造の作製が可能になり,光エネルギーの効率的な利用に貢献することができる.
|
Report
(4 results)
Research Products
(17 results)