Project/Area Number |
20K14709
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 21010:Power engineering-related
|
Research Institution | Yamagata University |
Principal Investigator |
Takayama Teruou 山形大学, 大学院理工学研究科, 助教 (70396589)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2022: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
|
Keywords | 有限要素法 / 数値シミュレーション / 高温超伝導薄膜 / 線形加速システム / 多目的最適化 / 遮蔽電流密度解析 / 形状最適化 / 超伝導リニア加速 / 高温超伝導 / 最適化問題 / 高温超伝導体 / 最適化 / 電磁界解析 |
Outline of Research at the Start |
超伝導応用機器を設計・開発するには,超伝導体中を流れる遮蔽電流密度の解析が必要不可欠である.特に,大型な超伝導機器を設計する際に,数値シミュレーションは必須であるといえる.一方,数値シミュレーションは高次元化・大規模化する傾向にあり,高性能解析技術の開発が強く望まれている.本研究の目的は,高温超伝導薄膜内に流れる遮蔽電流密度の時間発展問題を高性能かつ大規模最適化技術を開発し,超伝導応用機器の最適設計を目指すことである.
|
Outline of Final Research Achievements |
To enhance the acceleration performance of a superconducting linear accelerator (SLA) system used for fuel pellet injection in fusion reactors, a numerical investigation was carried out. For this purpose, a numerical code based on the finite element method (FEM) was developed to analyze the simultaneous behavior of shielding current density and dynamic motion of the high-temperature superconducting thin film. To optimize the current profile in the electromagnets, a method combining the normalized Gaussian network approach with a genetic algorithm was implemented in the code. The computational results demonstrated that the optimized current distribution resulted in a narrower profile compared to the uniform distribution. As a result, it was possible to increase the size of the thin film, leading to a significant reduction in the acceleration time required to reach the desired speed, approximately 2.9 times faster.
|
Academic Significance and Societal Importance of the Research Achievements |
新たに開発された数値コードとトポロジー最適化手法の組み合わせは,高温超伝導機器の設計最適化における応用性と有用性を示すことから,超伝導研究の進歩と新たな知見がもたらされる.最適化によって高温超伝導機器の性能向上やエネルギー効率の改善が実現し,超伝導技術の実用化が進むと考えられる.具体的には,高温超伝導リニア加速システムの設計により,磁場閉じ込め核融合炉の燃料ペレットを効率的に加速・制御することが可能になる.同様の手法は他の超伝導機器にも応用でき,エネルギー利用可能な超伝導機器の性能向上や効率化に貢献する.また,効率的かつ経済的な超伝導機器の開発が可能になり,幅広い社会的課題の解決にも寄与する.
|