Project/Area Number |
20K14773
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 21050:Electric and electronic materials-related
|
Research Institution | Kanazawa University |
Principal Investigator |
Zhang Xufang 金沢大学, ナノマテリアル研究所, 特任助教 (30857404)
|
Project Period (FY) |
2020-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
|
Keywords | diamond / MOS / Interface / interface / Diamond inversion MOSFET / Al2O3/diamond interface / Electrical property / Characterization / ダイヤモンドMOS / 界面準位 / チャネル移動度 |
Outline of Research at the Start |
本研究は、反転型ダイヤモンドMOSFETの性能向上に向けて、Al2O3/ダイヤモンド界面に存在するトラップの全容を解明する研究である。世界初の反転型ダイヤモンドMOSFETが2016年に報告された。しかし、その反転層正孔移動度は20 cm2/Vs程度とまだまだ低い値であり、界面評価が必要であるが、反転型MOSFETに対する界面評価はほとんど行われていない状況にある。本研究では、各種界面評価手法をダイヤMOSに適用し、チャネル移動度を制限している要因を解明し、特性向上への指針を提示することを目的とする。
|
Outline of Final Research Achievements |
Aiming at the low channel mobility of world’s first inversion-type p-channel diamond MOSFETs, we focused on the main limiting factor of the high interface state density at Al2O3/diamond interface. We proposed a novel technique to form OH-termination by using the hydrogenated diamond surface followed by wet annealing. The interface quality is significantly improved. Also, the trap properties at Al2O3-diamond interface were examined by conductance method. Besides, we applied the OH-termination formation technique and successfully fabricated the inversion-type p-channel heteroepitaxial diamond MOSFETs and made the electrical characterization.
|
Academic Significance and Societal Importance of the Research Achievements |
This study is meaningful for deep understanding of the interface states and is beneficial for developing more effective passivation techniques to improve the interface quality and device performance of diamond power MOSFETs, which is significant for the practical power application.
|