Development of tunnel field-effect transistor with steep switching based on dimensional control of density-of-state
Project/Area Number |
20K14797
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 21060:Electron device and electronic equipment-related
|
Research Institution | National Institute of Advanced Industrial Science and Technology |
Principal Investigator |
Kato Kimihiko 国立研究開発法人産業技術総合研究所, エレクトロニクス・製造領域, 主任研究員 (30815486)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2020: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
|
Keywords | トンネルFET / TFET / シリコン / 低消費電力 / 急峻スイッチング / オン電流 / 集積回路 |
Outline of Research at the Start |
超低消費電力集積回路に向け、急峻スイッチング素子として有望なトンネルFET(TFET)の高性能化を行う。スイッチング急峻性の確保には、ステップ状の状態密度関数が得られる2次元電子状態を有するPN接合間のトンネル現象を利用することが望まれる。本研究では、これを応用容易なSiチャネルTFETで実現することを目的とする。Si FinFETを基にした新規TFET素子構造を提案し、作製プロセスの確立と急峻スイッチングTFET動作の実験実証を目指す。
|
Outline of Final Research Achievements |
For future integrated circuits with low power consumption, development of a high-performance tunnel field-effect transistor (TFET), which is one of the most promising devices with steep on/off switching, has been carried out. A new device structure was proposed to utilize two-dimensional density-of-state (2D-DOS), and TCAD-based performance investigation, process development, and experimental demonstration have been performed. The newly proposed TFET consists of a Si Fin channel with regions of high impurity concentrations, which is formed by the tilted ion implantation technique. TCAD device simulation revealed that the TFET has the potential to realize the on/off switching of more than 5 orders under the operation voltage of 0.3 V after the optimization. For experimental, high-performance electron beam lithography was developed by utilizing a new negative-tone resist. Finally, enhancement of on-state current was demonstrated by a TFET device with a channel width of less than 10 nm.
|
Academic Significance and Societal Importance of the Research Achievements |
半導体集積回路の低消費電力化は、世の中で急速に発展するIoT/AI技術を支える重要技術である。半導体トランジスタはそれら集積回路の基盤素子であり、トランジスタの低消費電力は、次世代エレクトロニクスのエネルギー高効率化に幅広く貢献する。本研究は、既存半導体製造技術を積極的に活用し、Si CMOSラインを念頭に置いていることも重要な特徴である。Siは他の新材料系に比べてオン電流増大に難しさがあるものの、その課題克服に向けて真正面から取り組んだ研究である。本研究で開発したSiを基軸にしたTFETのオン電流増大技術は、将来の半導体集積回路に直結し得る、実用性のある技術と言える。
|
Report
(4 results)
Research Products
(11 results)