Project/Area Number |
20K15018
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 26020:Inorganic materials and properties-related
|
Research Institution | The University of Tokyo |
Principal Investigator |
Masuda Hiroshi 東京大学, 大学院工学系研究科(工学部), 講師 (20823701)
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2023: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
|
Keywords | セラミックス / 柔軟性 / フラッシュ焼結 / フラッシュ処理 / ジルコニア / TiO2 / 非弾性 / 粘弾性 / ナノインデンテーション / 擬弾性 / ナノ双晶 / ビーズミリング / 双晶誘起強靭化 / 双晶誘起高靭化 |
Outline of Research at the Start |
セラミックス材料は,優れた硬度・耐熱性・耐食性を活かして,超高圧・超高温・超腐食などの極限環境で「構造材料」として利用されている。一方で,脆く「破壊靭性」に乏しい点は,構造材料としては致命的な欠点であり,セラミックスにおける最大の課題だといえる。そこで本研究は,幅広い温度・環境において適用可能であり,硬度を犠牲にせず靭性を向上させることが可能な「ナノ双晶強化」に着目し,(1) セラミックスにおけるナノ双晶強化の微視的なメカニズムを解明することと,(2) ナノ双晶強化を利用することで高硬度・高靭性を両立させたバルクセラミックスを創出することを目的として実施される。
|
Outline of Final Research Achievements |
In the first part of this study, we conducted micromechanical testing of Y2O3-stabilized ZrO2 (YSZ) with nanotwin structures and successfully observed the twinning-induced toughening mechanism, wherein crack propagation was suppressed through twin domain nucleation and interface migration. In the latter part of the research, we discovered unexpected elastic softening behaviors among ceramics subjected to flash processing under strong electric fields and shifted our focus towards understanding this mechanism. The elastic softening behaviors were dependent on testing velocities and were observed in several oxide ceramics including 3YSZ, 8YSZ, and TiO2. These behaviors are possibly originated from anelasticity caused by recoverable motions of point defects introduced under strong electric fields.
|
Academic Significance and Societal Importance of the Research Achievements |
本結果は、セラミックスの新たな機能創出につながる重要な成果だと考えられる。これまで材料の弾性率を制御することは困難だとされてきたが、強電場を利用するフラッシュ処理によって弾性特性を自在に操ることができれば、セラミックス部品の信頼性向上につながるさまざまな工学的応用につながる。例えば、セラミックスの弾性率を低下させることで柔軟性を付与する、あるいは金属などとの異種材料接合時に熱破壊への耐久性を高めることが可能となるなど、セラミックス部品の信頼性向上に貢献することが期待される。
|