Project/Area Number |
20K15034
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 26020:Inorganic materials and properties-related
|
Research Institution | Osaka University (2021-2022) Japan Fine Ceramics Center (2020) |
Principal Investigator |
Fujii Susumu 大阪大学, 大学院工学研究科, 助教 (90826033)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
|
Keywords | 無機材料 / セラミックス / 結晶粒界 / 熱伝導 / フォノン / 熱電変換材料 / 計算科学 / 機械学習 / 熱伝導度 / 分子動力学法 |
Outline of Research at the Start |
実材料のほとんどは多数の微結晶から為る多結晶体である。この結晶の間に存在する粒界は、結晶内部とは異なる電子・原子構造を持ち、しばしば材料自体の特性も変化させる。本研究では、この粒界構造と熱伝導度の関係を、原子レベルの計算科学と機械学習的手法を組み合わせて解明する。これにより、今まで不可能だった粒界原子構造に基づく材料設計を可能にし、熱に関連するデバイス(熱電変換や遮熱コーティング等)の開発に貢献する。
|
Outline of Final Research Achievements |
Grain boundaries (GBs), that are ubiquitously formed between crystal grains of inorganic compounds, have a decisive effect on a variety of material properties. Here, we aimed to reveal the relationship between GB atomic structure and thermal conductivity and its underlying mechanisms. Systematic GB calculations showed that the dominant factor in GB thermal conductivity is the excess volume near the GBs in ionic MgO and SrTiO3, and the variance in bond angles in covalent Si. Using machine learning to the obtained computational data, a model was constructed to accurately predict GB thermal conductivity from the MgO GB structure. As a result, it was found that a small structural distortion effectively reduces GB thermal conductivity. This is a material design guideline to improve the performance of thermoelectric materials and thermal barrier coatings.
|
Academic Significance and Societal Importance of the Research Achievements |
粒界は材料中に普遍的に存在し、様々な材料特性に影響を与える。例えば、粒界は熱伝導度を低下させる作用を持つ。熱伝導度は遮熱性が必要な熱電変換材料(熱を直接電気に変換可能な材料)やタービンエンジン等の遮熱コーティング、放熱性が必要なPC等の電子デバイスなど、熱に関連する機能性材料において極めて重要である。本研究では、材料中の粒界がどのように熱伝導に影響を与えるかを、計算科学と機械学習により初めて定量的に解明した。この知見を活かせば、将来的により高性能な熱機能性材料の作製が可能となる。
|