Design principle of metal oxides as electrocatalysts for alkaline water splitting based on machine learning and construction of durable water electrolyzer cell systems
Project/Area Number |
20K15087
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 27030:Catalyst and resource chemical process-related
|
Research Institution | Tokyo Institute of Technology |
Principal Investigator |
Sugawara Yuuki 東京工業大学, 科学技術創成研究院, 助教 (10814791)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2020: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
|
Keywords | アルカリ水電解 / 電気化学触媒 / 機械学習 / 酸素発生反応 / 金属酸化物 / 構造因子 / 密度汎関数理論 / 設計指針 / MOF / Fe―O結合長 / 金属リン酸化物 / 水素発生反応 |
Outline of Research at the Start |
地球環境問題・エネルギー問題の解決のため、化石燃料に依存せず太陽光・風力などの再生可能エネルギーを有効利用することが求められる。そこで、再生可能エネルギーから得られた電気により水を分解(水電解)してクリーンな燃料である水素を製造し、各消費地に運搬し高効率な水素燃料電池などで電気に戻して使用する「Power to Gas」のアプローチが提案されている。したがって、安価で高活性かつ高耐久な水電解用電極触媒の開発が求められている。本課題では、データの解析および予測を極めて迅速に実施可能な人工知能技術を活用することで、高活性電極触媒の効率的な設計開発を推進し、高性能水電解用セルシステムの構築を行う。
|
Outline of Final Research Achievements |
A design guideline for highly active multimetal oxide catalysts AxByOz (A: typical metal, B: transition metal) for water electrolysis has been established through a machine learning analysis. Using this design guideline, we succeeded in developing a layered cobalt-manganese oxide/graphene hybrid catalyst with the highest catalytic activity for anodic oxygen evolution reaction in the water electrolysis among the previously reported transition metal-based binary oxides. Furthermore, we focused on the development of nanospinels AMn2O4 (A: inexpensive typical metal or transition metal) composed of manganese and reported highly active NiMn2O4 nanospinels.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究成果は、水電解用高性能電極触媒の開発および水電解による水素製造技術の高効率化に対して、結晶構造の観点から設計指針を提供することで当分野を大きく飛躍させると期待される。水電解反応に対する触媒作用と結晶構造の間に眠る法則を明らかにするという学術的な有用性に加えて、再生可能エネルギーと水からの水素製造のための水電解用触媒の開発は脱炭素ソリューションとしてのエネルギー変換技術の普及拡大に大きく貢献できる。
|
Report
(4 results)
Research Products
(22 results)