Designing high-performance thermoelectrics in low-dimensional materials
Project/Area Number |
20K15178
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 29030:Applied condensed matter physics-related
|
Research Institution | Tohoku University |
Principal Investigator |
NGUYEN TUAN HUNG 東北大学, 学際科学フロンティア研究所, 助教 (10844425)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
|
Keywords | Thermoelectricity / DFT calculation / Optical properties / Raman calculation / 1D materials / 2D materials / 3D semimetals / Photocatalysis / Photocatalytic / Raman spectra / DFT calculations / Photovoltaics |
Outline of Research at the Start |
Thermoelectric (TE) materials can convert directly waste heat to electrical energy in solid-state-device without any moving parts and carbon emissions. In this project, we will develop a comprehensive theory for TE, and expose new concepts to improve TE performance of low-dimensional materials
|
Outline of Final Research Achievements |
We theoretically studied the thermoelectric (TE) transports of two-dimensional materials and 3D topological semimetals. In the 2D materials, such as Janus γ-Ge2SSe, we found an intrinsic low lattice thermal conductivity of 3.33 W/mK at room temperature, contributing to high TE efficiency. We also found that the 3D semimetal can enhance the TE performance due to the unusual density of states of the 3D semimetals and shows a new TE response, the so-called TE Hall effect. As a related topic, we also discussed low-dimensional materials for another energy conversion, such as photocatalysis.
|
Academic Significance and Societal Importance of the Research Achievements |
熱電材料は、排ガスを発生させることなく、廃熱からエネルギーを取り出すことができます。したがって、熱電変換デバイスは、カーボンニュートラルな社会にとって不可欠なエネルギー変換となる。本研究では、熱電材料として2次元材料と3次元半金属に注目した。その結果、単層2次元材料は、量子閉じ込め長によって熱電性能を向上させることができることを発見した。一方、3次元半導体は、そのトポロジー特性に基づき、熱電変換を実現する新しい方法を示しています。このように、今回の成果は、高性能なエネルギー変換を実現する新しい熱電材料の開発に貢献するものである。(Using DeepL Translator)
|
Report
(4 results)
Research Products
(32 results)