Project/Area Number |
20K15244
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 32020:Functional solid state chemistry-related
|
Research Institution | Hokkaido University (2021) Nagoya University (2020) |
Principal Investigator |
|
Project Period (FY) |
2020-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2021: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2020: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
|
Keywords | 有機誘電体 / 光電変換 / 有機エレクトロニクス / 電荷移動錯体 / 強誘電体 |
Outline of Research at the Start |
本研究では、有機材料の分極を光で変調し,高速光電変換への応用が期待できる光応答性誘電体を開拓する.有機誘電体は極めて高い電子分極能を持つ.このような分極を光によって変調,制御できれば分極変化に由来する電流(分極電流)が発生するため,高速応答性の光電変換へと応用が期待できる.光電変換素子への応用には,孤立分子の分極だけではなく結晶や薄膜状態での分極がより重要となるため,本研究では薄膜状態で光分極変調を起こす系を目指し.近赤外光に応答し分極が変調する分子,結晶を設計するとともに,配向制御の方法論を確立する.実際に得られた結晶や薄膜の基礎物性を測定して光分極変調可能な有機誘電体を開拓する.
|
Outline of Final Research Achievements |
In this study, we investigated the photoinduced polarization current of a photoelectric conversion cell (MISIM) consisting of a metal/insulator /semiconductor/insulator/metal. We used a thin film of parylene C as the I layer and a charge-transfer complex film of TMB and TCNQ derivatives as the S layer. The correlation between the molecular orientation of the charge-transfer complex thin films and the photoinduced polarization current was evaluated. The correlation between the ground state of the charge-transfer complexes and the photoinduced polarization current was evaluated. It was found that the neutral complexes produced 1000 times higher photoinduced polarization current than the ionic complexes. Additionally, It was found that MISIM-type devices show a polarization hysteresis by the external electric field.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では,有機材料の分極に着目した電子デバイスを追究した.本デバイスの動作機構は従来のキャリア輸送を根源とする機構とは異なり,分極変化を起源とするため,低移動度である有機材料に適合した手法である.本研究により,分極駆動型の光電変換が実証され,次世代高速光電変換実現につながることが期待される.また,界面分極の安定化により分極ヒステリシスを誘起することに成功した.従来は結晶全体あるいは薄膜全体で分極をそろえるために特別な材料設計が必要だったが,本手法では界面の分極のみで駆動するため,多様な材料に応用可能である.
|