Project/Area Number |
20K15333
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 35010:Polymer chemistry-related
|
Research Institution | Kyoto University |
Principal Investigator |
Fujikawa Takao 京都大学, 高等研究院, 特定研究員 (70839688)
|
Project Period (FY) |
2020-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2020: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
|
Keywords | 多孔性材料 / 不斉空間 / 分子認識 / 多孔性配位高分子 / 不斉構造 / キラル配位子 / ガス吸着 / ヘリセン / 螺旋反転 / キラリティー |
Outline of Research at the Start |
ある物質・物体を鏡に映し出したとき、もとの形とは重ね合わせることができない性質をキラリティー(掌性)という。例えばDNAやタンパク質などの生命体を構成する物質の大半はキラルな物質であり、尚且つ片方の鏡像異性体のみを利用していることが分かっている。生命現象の他にも、キラリティーは円偏光発光などの物理的性質にも影響を与えることが知られており、技術的な課題は多いものの3次元ディスプレイなどへの応用も検討されている。単分子レベルでのキラリティー制御に関しては不斉合成技術などによって達成されているが、本研究では螺旋状分子を利用した固体材料レベルでの新しいキラリティー制御に挑む。
|
Outline of Final Research Achievements |
We have developed porous materials embedded with dynamic asymmetric structures and worked on the construction of a molecular recognition system based on a new mechanism through the analysis of the molecular adsorption process. The active sites of biomolecules, such as enzyme proteins, are omnidirectional and fluctuating chiral spaces, and thus have high molecular recognition ability and functionality. By bottom-up design starting from the synthesis of chiral organic ligands, we have reproduced a dynamic and asymmetric space inside metal-organic frameworks (MOFs) reminiscent of biomolecules and discovered an asymmetric adsorption/desorption process unprecedented for gas molecule adsorption materials.
|
Academic Significance and Societal Importance of the Research Achievements |
物質の変換・分離・精製プロセスは現代の物質社会を根幹から支えるインフラ技術である。特にエネルギー資源、ポリマー材料、医薬品源薬などといった分子性資源の加工には膨大なエネルギーが必要とされている。高い精度でこれらの分子性資源を吸着できる分子認識場を開発できれば、高効率で低コストな物質変換プロセスの構築が可能となる。本研究は、新たな分子メカニズムに基づく分子認識場の構築手法を提案するものであり、次世代の物質分離技術や物質変換技術の開発に資するものである。
|