Project/Area Number |
20K15334
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 35010:Polymer chemistry-related
|
Research Institution | Kyoto University |
Principal Investigator |
Gon Masayuki 京都大学, 工学研究科, 助教 (90776618)
|
Project Period (FY) |
2020-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2021: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2020: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
|
Keywords | 高分子合成 / 超原子価 / 共役系高分子 / 光物性 / ヘテロ元素 / 刺激応答性 / 錯体 |
Outline of Research at the Start |
典型元素錯体の配位数や種類を変え、超原子価結合、非対称構造、湾曲構造といった元素特有の構造を共役系高分子内に構築し、近赤外領域を含む高輝度固体発光、モルフォロジー変化に伴う電子物性制御、溶液・固体化学センサーとしての応用など、従来の炭素骨格では実現困難であった機能性高分子材料の創出を目的とする。配位構造が共役系にもたらす影響を解明し、構造と共役系の調和が相乗的に創り出す基礎・応用・材料化学の学理を追究する。
|
Outline of Final Research Achievements |
Using conjugated polymers as a scaffold for evaluation systems, it is possible to clarify new functionality derived from structures peculiar to heteroatoms such as coordination numbers and types of complexes with typical elements, hypervalent bonds, asymmetric and bending structures. Specifically, we achieved preparing functional polymer materials which were difficult to realize with conventional carbon skeletons, for example, efficient solid-state emission, near-infrared absorption and emission, controlling electronic properties by morphological changes, and application as solution and solid-state chemical sensors. From the above results, we concluded that it was possible to clarify the basic, application, and material chemistry synergistically created by the harmony between the coordination structures and the conjugated systems.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究成果により、ヘテロ元素を基盤とした”典型元素配位構造を利用した機能性共役系高分子”は、従来の炭素骨格では実現困難であった機能性材料を創出可能という、分子設計に革新をもたらすことができる。共役系高分子はヘテロ元素特有の機能を増幅する足場として最適であり、構造が複雑化する傾向にあった近赤外固体発光材料や、偶然によるところが大きかった刺激応答性の付与が、計画的な分子設計に基づき容易に実現することが可能になった。典型元素の構造と電子物性という分野を開拓したことによる学術的意義が大きいだけでなく、合成の簡潔さや高分子材料化、機能性という視点も備え、社会的にも有意義な結果であると期待している。
|