Study of charging process at positive electrode in rechargeable lithium-air battery
Project/Area Number |
20K15370
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 36010:Inorganic compounds and inorganic materials chemistry-related
|
Research Institution | National Institute for Materials Science |
Principal Investigator |
MATSUDA Shoichi 国立研究開発法人物質・材料研究機構, エネルギー・環境材料研究拠点, 主任研究員 (30759717)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
|
Keywords | 次世代蓄電池 / リチウム空気電池 / 硝酸イオン / レドックスメディエーター / 酸素発生反応 / クロスオーバー / 協調効果 |
Outline of Research at the Start |
リチウム空気電池は既存のリチウムイオン電池の2~5倍のエネルギー密度を可能にする次世代蓄電池の最有力候補である。しかしながら、充電時の正極反応過電圧が高いことが、リチウム空気電池の実用化への最大の課題となっている。本研究では、硝酸イオンをモデルケースとして、その多様や電気化学反応挙動を体系的に理解し、レドックスメディエーターに求められる必要因子を明らかにする。このような一連の研究を通じて、リチウム空気電池の実用化に不可欠な、可逆的な電気化学反応を可能とする電解液設計に関する知見の獲得を目指す。
|
Outline of Final Research Achievements |
Lithium-air batteries are the most promising candidates for next-generation storage batteries because they enable energy densities two to five times that of existing lithium-ion batteries. However, the high positive electrode reaction overvoltage during charging and the low output density are the biggest problems in putting lithium-air batteries into practical use. The purpose of this study was to clarify the measures to solve the above battery performance problems by focusing on the electrochemical reaction behavior of nitrate ion redx. Specifically, we focused on a mixed electrolyte system of nitrate ion/amide solvent/fluorine solvent, and succeeded in developing an electrolyte that achieves high reaction reversibility for both the oxygen positive electrode and the lithium negative electrode of lithium-air batteries.
|
Academic Significance and Societal Importance of the Research Achievements |
今回開発した硝酸イオン/アミド溶媒/フッ素溶媒の混合電解液系を用いることで、リチウム空気電池の酸素正極・リチウム負極の双方において高い反応可逆性での反応進行が可能となることが明らかとなった。その結果、1mA/cm2, 2mAh/cm2という非常に高い電流密度・面積容量の条件において、リチウム空気電池の充放電反応の作動に成功した。今回提示した電解液開発実施例は、今後の材料開発において、大きな指針となるものであり、リチウム空気電池の早期実用化に大きく寄与するものである。
|
Report
(4 results)
Research Products
(6 results)