Development of breeding optimization platform by genomic prediction and simulation
Project/Area Number |
20K15506
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 39010:Science in plant genetics and breeding-related
|
Research Institution | National Agriculture and Food Research Organization |
Principal Investigator |
Yabe Shiori 国立研究開発法人農業・食品産業技術総合研究機構, 作物研究部門, 主任研究員 (60767771)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2022: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2021: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
|
Keywords | ゲノミック予測 / シミュレーション / 植物育種 / ゲノム育種 / イネ / 自殖性植物 / ソバ / 他殖性植物 / 自殖性作物 / ゲノミックセレクション / 育種 / マーカー利用選抜 |
Outline of Research at the Start |
多様な作物種において効率的な育種を実現するため、ゲノミックセレクション(GS)の工程を最適化する育種シミュレーション基盤を開発する。既知の遺伝子やQTLの情報を効率的に育種工程の中に取り込んだGS育種を実施するための育種基盤を構築することを目的とする。そのため、GSに用いる予測モデルの最適化および、GSと従来のマーカー利用選抜を組み合わせた育種工程の最適化を同時に実施できる解析・シミュレーション基盤を構築する。また、開発した基盤の有効性を評価するため、自殖性作物の2系交配による育種および他殖性作物の集団選抜を想定し、実際の栽培データを用いた精度評価を実施する。
|
Outline of Final Research Achievements |
The goal of this study was establishing a platform for efficient breeding using genomic information, assuming traits that were difficult to improve genetically or traits showing trade-off relationship. I conducted breeding scheme optimization simulations based on genetic analysis and genomic prediction for rice and common buckwheat, as the model crop of self-fertilizing and outcrossing crop, respectively. The results showed that the breeding simulation platform could show the optimal scheme for each crop and trait by utilizing the information obtained from a priori genetic analysis. This method is expected to be useful in further improvement in the efficiency of genome breeding of crops.
|
Academic Significance and Societal Importance of the Research Achievements |
これまでに、ゲノムワイドマーカーを用いた選抜方法であるゲノミックセレクション(GS)の植物育種における有効性および、育種工程を最適化するためにシミュレーションを用いる有効性が示されているが、本研究では、複数の作物・形質に合わせて、遺伝解析で得られた知見と組み合わせた際に最適な育種工程を提案できた。この基盤は、実際の作物育種においてゲノム情報を有効に活用する新しいスタンダードを提案できる可能性がある。さらに、本研究の遺伝解析で得られた知見は今後のさらなる研究に発展できる可能性があり、学術的にも意義がある。
|
Report
(4 results)
Research Products
(5 results)