Spatiotemporal control system of spindle function by photoreactive kinesin
Project/Area Number |
20K15744
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 43030:Functional biochemistry-related
|
Research Institution | The University of Tokyo |
Principal Investigator |
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2020: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
|
Keywords | 分子モーター / キネシン / 光制御 / モータータンパク質 |
Outline of Research at the Start |
真核細胞に共通する細胞分裂装置である紡錘体の機能を解明するためには、紡錘体の構成要素であるモータータンパク質がいつ・どこで「力仕事」をするかを調べる必要がある。本研究では、光応答性タンパク質の構造変化を利用して、光照射により標的キネシンの運動機能のON/OFFを制御し、紡錘体形成におけるキネシンの活性を分裂中の特定時期や限られた場所で制御できるシステムを構築し、キネシンの時空間的分子プロセスを明らかにすることを目的とする。
|
Outline of Final Research Achievements |
To elucidate the functionality of the spindle apparatus, a universal cellular motility apparatus in eukaryotic cells, it is necessary to determine when and where motor proteins are active. This study aims to investigate the activity of motor proteins involved in spindle formation at specific times and locations by introducing light-responsive proteins into the motor proteins and constructing an experimental system to control their motility through light irradiation. Initially, the motility functions of individual motor proteins, namely kinesin-1, kinesin-5, and kinesin-14, were elucidated through in vitro experiments, identifying the parts involved in torque generation and directional control. Additionally, the introduction sites of light-responsive proteins that do not hinder motility were examined, and mutant variants with surface residue substitutions were created and evaluated.
|
Academic Significance and Societal Importance of the Research Achievements |
紡錘体の機能解明は生物学や医学分野において重要です。細胞分裂の異常はがんや発達異常の原因となるため、紡錘体の正常な機能の理解は疾患予防や治療法の開発につながります。光制御技術を応用すると、特定の時期や場所でタンパク質の活性を制御する手法の開発が期待されます。本研究では紡錘体のモータータンパク質の活性化時期と位置を明らかにし、その機能や制御メカニズムに新たな知見をもたらすことができます。さらに、キネシンの個別の運動機能解明は細胞内の運動プロセスの理解を深める上で重要です。これらの成果は学術的に価値があり、紡錘体の機能解明による社会的な利益や疾患の予防・治療に寄与する可能性があります。
|
Report
(4 results)
Research Products
(7 results)