• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Deep learning on genome sequence to identify epistatic effects in complex diseases

Research Project

Project/Area Number 20K15773
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 43050:Genome biology-related
Research InstitutionThe University of Tokyo

Principal Investigator

Koido Masaru  東京大学, 大学院新領域創成科学研究科, 助教 (40787561)

Project Period (FY) 2020-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2022: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2020: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywordsディープラーニング / 機械学習 / 遺伝子発現制御 / エピスタシス / ゲノム解析
Outline of Research at the Start

遺伝因子の組合せ効果(エピスタシス効果)の同定は遺伝統計学が古くより探求してきた問いであるが、古典的統計学の手法では多重検定と計算量の問題に直面する。本研究では、疾患感受性多型の発現制御領域への集積に着目し、(1)臓器・細胞別の転写制御に対するエピスタシス効果を高精度・網羅的に得て、(2)それらと多因子疾患との関連を日欧バイオバンクの遺伝統計解析から検証する。特に(1)を達成するためのツールとして、臓器・細胞種別の発現制御モチーフ配列を数十kbのゲノム配列パターンから学習した高速な機械学習モデルを創出し、従来特に発見困難な3つ以上の多型のエピスタシス効果の同定を目指す。

Outline of Final Research Achievements

In this study, I demonstrated that the machine learning method for DNA sequence patterns, MENTR, accurately predicts causal variants of transcriptional regulation. MENTR identified the causal variants and their target transcripts (or transcriptional regulations) for diseases such as asthma, atopic dermatitis, and ossification of the posterior longitudinal ligament. Leveraging game theory revealed that MENTR utilizes distant nonlinear effects in its predictions, suggesting the learning of epistasis effects for transcription. Revising the deep learning model in MENTR led to an 80% reduction in model parameters at the expense of a 5% accuracy trade-off.

Academic Significance and Societal Importance of the Research Achievements

MENTRの原因多型の予測に関する精密さ(特に真陰性予測能の高さ)は多型の組み合わせ効果(エピスタシス効果)を検証するための必須の特性である。本研究でエピスタシス効果を自ずと学習していることが示唆されたMENTRとその軽量モデルの活用により、大規模ゲノム解析から見出される疾患感受性多型の再解釈が進展し、エピスタシス効果を含む新たな生物学的知見の発見が期待される。

Report

(4 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (16 results)

All 2023 2022 2021 2020 Other

All Journal Article (8 results) (of which Int'l Joint Research: 3 results,  Peer Reviewed: 5 results,  Open Access: 4 results) Presentation (4 results) (of which Int'l Joint Research: 2 results,  Invited: 4 results) Remarks (4 results)

  • [Journal Article] A novel CCDC91 isoform associated with ossification of the posterior longitudinal ligament of the spine works as a non-coding RNA to regulate osteogenic genes2023

    • Author(s)
      Nakajima Masahiro、Koido Masaru、Guo Long、Terao Chikashi、Ikegawa Shiro
    • Journal Title

      The American Journal of Human Genetics

      Volume: 110 Issue: 4 Pages: 638-647

    • DOI

      10.1016/j.ajhg.2023.03.004

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] MENTR:DNA配列から非翻訳RNAの発現を予測する機械学習法2023

    • Author(s)
      小井土 大 , 寺尾 知可史
    • Volume
      41
    • Pages
      971
    • DOI

      10.18958/7223-00005-0000413-00

    • Related Report
      2022 Annual Research Report
  • [Journal Article] Prediction of the cell-type-specific transcription of non-coding RNAs from genome sequences via machine learning2022

    • Author(s)
      Koido Masaru、Hon Chung-Chau、Koyama Satoshi、Kawaji Hideya、Murakawa Yasuhiro、Ishigaki Kazuyoshi、Ito Kaoru、Sese Jun、Parrish Nicholas F.、Kamatani Yoichiro、Carninci Piero、Terao Chikashi
    • Journal Title

      Nature Biomedical Engineering

      Volume: Online Issue: 6 Pages: 830-844

    • DOI

      10.1038/s41551-022-00961-8

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Stroke genetics informs drug discovery and risk prediction across ancestries2022

    • Author(s)
      Mishra Aniket、Malik Rainer、Hachiya Tsuyoshi、Jurgenson Tuuli、Namba Shinichi、Posner Daniel C.、Kamanu Frederick K.、Koido Masaru、et al.
    • Journal Title

      Nature

      Volume: 611 Issue: 7934 Pages: 115-123

    • DOI

      10.1038/s41586-022-05165-3

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Stroke genetics informs drug discovery and risk prediction across ancestries2022

    • Author(s)
      Debette Stephanie、Mishra Aniket、Malik Rainer、Hachiya Tsuyoshi、Jurgenson Tuuli、Namba Shinichi、Koido Masaru、et al.
    • Journal Title

      Research Square

      Volume: -

    • DOI

      10.21203/rs.3.rs-1175817/v1

    • Related Report
      2021 Research-status Report
    • Open Access / Int'l Joint Research
  • [Journal Article] Eight novel susceptibility loci and putative causal variants in atopic dermatitis2021

    • Author(s)
      Tanaka Nao、Koido Masaru、Suzuki Akari、Otomo Nao、Suetsugu Hiroyuki、Kochi Yuta、Tomizuka Kouhei、Momozawa Yukihide、Kamatani Yoichiro、Ikegawa Shiro、Yamamoto Kazuhiko、Terao Chikashi
    • Journal Title

      Journal of Allergy and Clinical Immunology

      Volume: 148 Issue: 5 Pages: 1293-1306

    • DOI

      10.1016/j.jaci.2021.04.019

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Susceptibility loci and polygenic architecture highlight population specific and common genetic features in inguinal hernias2021

    • Author(s)
      Hikino Keiko、Koido Masaru、Tomizuka Kohei、Liu Xiaoxi、Momozawa Yukihide、Morisaki Takayuki、Murakami Yoshinori、The Biobank Japan Project、Mushiroda Taisei、Terao Chikashi
    • Journal Title

      EBioMedicine

      Volume: 70 Pages: 103532-103532

    • DOI

      10.1016/j.ebiom.2021.103532

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Predicting cell-type-specific non-coding RNA transcription from genome sequence2020

    • Author(s)
      Koido Masaru、Hon Chung-Chau、Koyama Satoshi、Kawaji Hideya、Murakawa Yasuhiro、Ishigaki Kazuyoshi、Ito Kaoru、Sese Jun、Kamatani Yoichiro、Carninci Piero、Terao Chikashi
    • Journal Title

      bioRxiv

      Volume: 2020.03.29.011205

    • DOI

      10.1101/2020.03.29.011205

    • Related Report
      2020 Research-status Report
    • Open Access
  • [Presentation] 元WET研究者によるオミクス統合解析手法の開発2022

    • Author(s)
      小井土大
    • Organizer
      第45回 日本分子生物学会年会
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] 遺伝的リスクを生物学的に解釈するゲノム・オミックス・ヒト細胞モデルの統合解析2022

    • Author(s)
      小井土大
    • Organizer
      第49回日本毒性学会学術年会
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] Challenges and opportunities in utilizing machine learning for genomics research2020

    • Author(s)
      Masaru Koido
    • Organizer
      The 7th RIKEN-Karolinska Institutet/SciLifeLab Joint Symposium: Biomedical Data for Artificial Intelligence - The role of AI in the future direction of Life Science research -
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Learn genomics from AI for interpreting the roles of non-coding RNAs in complex traits2020

    • Author(s)
      Masaru Koido
    • Organizer
      2nd ASHBi Mathematical Biology Workshop
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Remarks] MENTR 公開ツール

    • URL

      https://github.com/koido/MENTR

    • Related Report
      2022 Annual Research Report
  • [Remarks] MENTR実行サポートページ

    • URL

      https://github.com/koido/MENTR_demo_JP

    • Related Report
      2022 Annual Research Report
  • [Remarks] MENTR in silico変異導入法結果

    • URL

      https://zenodo.org/record/5638259

    • Related Report
      2022 Annual Research Report
  • [Remarks] MENTR学習に用いるデータ

    • URL

      https://zenodo.org/record/5348471

    • Related Report
      2022 Annual Research Report

URL: 

Published: 2020-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi