• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of ovarian tumor malignancy risk/histotype prediction system using multifaceted blood flow information with MRI

Research Project

Project/Area Number 20K16752
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 52040:Radiological sciences-related
Research InstitutionChiba University

Principal Investigator

Takada Akiyo  千葉大学, 医学部附属病院, 特任助教 (20791990)

Project Period (FY) 2020-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Keywords卵巣腫瘍 / MRI / 血流情報 / Ultra-fast Dynamic MRI / IVIM
Outline of Research at the Start

我々は、Ultra-fast DCE撮像・IVIMを用いて、卵巣腫瘍の組織型と悪性リスクの予測をより正確に予測できる可能性があると考えた。卵巣腫瘍の病理像は不均一かつ多彩であるため腫瘍全体を解析対象とし、摘出検体の病理像と画像の対比が必要と考えた。本研究では、従来の形態情報・MRI信号情報に詳細かつ多角的な血流情報を統合し、病理と対比することで、悪性リスク・組織型・予後予測システムの作成を目指す。

Outline of Final Research Achievements

To establish imaging protocols, we performed high temporal resolution dynamic contrast-enhanced MRI and intravoxel incoherent motion (IVIM) imaging experiments of ovarian tumors. We collected MRI images, pathology, and clinical data of benign, borderline, and malignant ovarian tumors, and image analysis using software for blood flow analysis was initiated. Data collection and analysis are currently continuing to establish a malignancy risk and histological type prediction model.

Academic Significance and Societal Importance of the Research Achievements

DCE-MRIおよびIVIMから、それぞれKtrans, kep, ve、D, D*, fの定量値を抽出した。
Ktransの値は、悪性腫瘍において、境界悪性、良性より大きくなる傾向が見られたが、境界悪性と良性で解析を行えた症例数が少なく、予測モデルの構築にはさらなる症例の蓄積が必要と考えられた。悪性腫瘍の組織型についても、各種定量値に傾向は見られるものの、有意差は見られなかった。こちらも、さらなる症例の蓄積が必要と考えられた。現今後症例数を増やし、T2WIやDWIなど他のMRIシークエンスから抽出した特徴量や、腫瘍マーカーなどの臨床情報を加えることにより、予測モデルを構築を目指す。

Report

(4 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (4 results)

All 2023 2022

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (3 results) (of which Int'l Joint Research: 1 results)

  • [Journal Article] Prognosis prediction of uterine cervical cancer using changes in the histogram and texture features of apparent diffusion coefficient during definitive chemoradiotherapy2023

    • Author(s)
      Takada Akiyo、Yokota Hajime、Nemoto Miho Watanabe、Horikoshi Takuro、Matsumoto Koji、Habu Yuji、Usui Hirokazu、Nasu Katsuhiro、Shozu Makio、Uno Takashi
    • Journal Title

      PLOS ONE

      Volume: 18 Issue: 3 Pages: 0282710-0282710

    • DOI

      10.1371/journal.pone.0282710

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] iZoom applying tilted 2D Echo-Planar RF excitation improved the image quality of reduced FOV DWI for uterine cervical cancer: a preliminary study2023

    • Author(s)
      Akiyo Takada
    • Organizer
      International Society For Magnetic Resonance in Medicine (ISMRM)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 子宮体癌術前reduced FOV DWIを用いたtexture解析によるハイリスク病変の予測2022

    • Author(s)
      高田 章代
    • Organizer
      日本磁気共鳴学会
    • Related Report
      2022 Annual Research Report
  • [Presentation] 腟式子宮全摘後の骨盤底部に発生した、 NTRK3-rearrangementを有する分類不能肉腫2022

    • Author(s)
      高田 章代
    • Organizer
      腹部放射線学会
    • Related Report
      2022 Annual Research Report

URL: 

Published: 2020-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi