• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

MRIを用いた深層学習による胸部領域のPET吸収補正法の開発

Research Project

Project/Area Number 20K16758
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 52040:Radiological sciences-related
Research InstitutionKobe University

Principal Investigator

曽 菲比  神戸大学, 医学部附属病院, 医員 (50837680)

Project Period (FY) 2020-04-01 – 2025-03-31
Project Status Granted (Fiscal Year 2023)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2023: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥130,000 (Direct Cost: ¥100,000、Indirect Cost: ¥30,000)
Fiscal Year 2020: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
KeywordsPET/MRI / 減弱補正 / 深層学習 / in-phase Zero echo-time / 吸収補正
Outline of Research at the Start

本研究の目的は,胸部を対象としたPET/MRIにおいて,MR画像から深層学習を行いてγ線吸収補正マップを作成することにより,定量精度の高いPETをPET/MRI装置を用いて得ることである.従来法およびZTE法によるMRI画像から,深層学習を用いて骨の情報を抽出することで,骨を含めた5つの組織のMRI吸収補正マップが作成可能となると考えた.また胸部領域では,複雑な形態の骨が存在するとともに,呼吸運動や心臓の運動による画像の劣化が想定されるため,MRIは呼吸同期法を用いて撮像するとともに,中心周波数を調整して撮像したipZTE法を用いる.

Outline of Annual Research Achievements

In our previous study, pseudo-CT (pCT) with bone components from 360 ZTE-MRI training data set using the 2-dimensional (2D) deep learning (DL) method including unsupervised generative adversarial networks (GAN) yielded μmaps with bone components (μmapbone-2D) in combination with conventional bone-lacking μmaps (μmapno-bone) in the chest. We aimed to assess the feasibility of pCT and μmap (μmapbone-2.5D) from ZTE using 2.5 dimensional (2.5D) DL method and compare the quantitative values of the normal tissues and lesions between μmapno-bone-, μmapbone-2D-, and μmapbone-2.5D-besed reconstruction.

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

μmapbone-2.5D was significantly larger than μmapbone-2D in the normal bone and the liver (p=0.0009, p< 0.0001). The SUVmax by μmapbone-2.5D was significantly larger than μmapbone-2D in all regions (p= 0.0176). The correlation coefficients of the histogram for μmapbone-2.5D and μmapbone-2D were significantly higher than μmapno-bone in the bone (p<0.0001). The image-quality scores of pCT bone-2.5D for bone delineation and bone continuity were significantly higher than pCTbone-2D in both readers (p= 0.0106, p< 0.0001). μmapbone-2.5D are assumed to yield smaller differences in SUV with μmapCT than μmapno-bone and μmapbone-2D in normal tissues and lesions. The result supports the feasibility of using the 2.5D method for the generation of bone components from ZTE with DL.

Strategy for Future Research Activity

Attenuation correction (AC) of bone components in the chest on positron emission tomography-magnetic resonance images (PET/MRI) is challenging due to the complicated anatomical structures and limited delineation of the bone on MRI. A deep learning approach using unsupervised generative adversarial networks (GANs) with adaptive layer-instance normalization for image-to-image translation (U-GAT-IT) in combination with a modality-independent neighborhood descriptor (MIND) performed in our previous study yielded a pseudo-CT (pCT) generation with bone components from Zero echo-time (ZTE) MRI for AC in the chest. The purpose of this study was the external validation of the deep learning approach.

Report

(4 results)
  • 2023 Research-status Report
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (6 results)

All 2023 2022 2021 2020

All Presentation (6 results) (of which Int'l Joint Research: 2 results)

  • [Presentation] Impact of 2.5-dimensional Deep Learning for Zero-TE MR-based Attenuation Correction on Chest FDG PET/MRI: Comparison with Conventional and 2-dimensional Deep Learning Approach2023

    • Author(s)
      M. Tachibana, M. Nogami, H. Matsuo, M. Nishio, J. I. Inoue, F. Zeng, T. Kurimoto, K. Kubo, T. Murakami
    • Organizer
      European Association of Nuclear Medicine 2023(国際学会)
    • Related Report
      2023 Research-status Report
    • Int'l Joint Research
  • [Presentation] Zero-TE MR-based Attenuation Correction with a Deep Learning Approach: Impact of bone components on Attenuation Correction for Chest FDG PET/MRI2022

    • Author(s)
      Miho Tachibana, Munenobu Nogami, Hidetoshi Matsuo, Mizuho Nishio, Junko Inukai, Feibi Zeng, Takako Kurimoto, Kazuhiro Kubo and Takamichi Murakami
    • Organizer
      European Association of Nuclear Medicine 2022(国際学会)
    • Related Report
      2022 Research-status Report
  • [Presentation] Zero-TE vs 2-point Dixon MRI-based Attenuation Correction for Chest FDG PET/MRI with Deep Learning: Comparison of Quantitative Values on Pseudo CT and Reconstructed PET data2021

    • Author(s)
      Munenobu Nogami, Hidetoshi Matsuo, Mizuho Nishio, Miho Tachibana, Junko Inukai, Feibi Zeng, Takako Kurimoto, Kazuhiro Kubo and Takamichi Murakami
    • Organizer
      European Association of Nuclear Medicine 2021
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] unpaired の学習データと構造保存損失を利用した深層学習によるMR・CT画像変換2020

    • Author(s)
      西尾瑞穂
    • Organizer
      第48回日本磁気共鳴医学会大会
    • Related Report
      2020 Research-status Report
  • [Presentation] Zero-TE MRI-based Attenuation Correction for Chest FDG PET/MRI: A Feasibility Study of Deep Learning Approach Using Unpaired PET/CT Data2020

    • Author(s)
      Munenobu Nogami, Hidetoshi Matsuo, Mizuho Nishio, Feibi Zeng, Junko Inukai, Florian Wiesinger, Sandeep. Kaushik, Takako Kurimoto3, Kazuhiro Kubo, Takamichi Murakami
    • Organizer
      European Association of Nuclear Medicine 2020
    • Related Report
      2020 Research-status Report
  • [Presentation] 胸部PET/MRIの吸収補正:別症例のCTを用いてZTEから偽CTを深層学習により作成する検討2020

    • Author(s)
      野上 宗伸、松尾 秀俊、西尾 瑞穂、曽 菲比、犬養 純子、Florian Wiesinger、Sandeep. Kaushik、栗本 貴子、久保 和広、村上 卓道
    • Organizer
      第60回日本核医学会総会
    • Related Report
      2020 Research-status Report

URL: 

Published: 2020-04-28   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi