• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Automated Diagnosis of Obstetrics and Gynecology MRI Using Deep Learning

Research Project

Project/Area Number 20K16780
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 52040:Radiological sciences-related
Research InstitutionKyoto University

Principal Investigator

Yasuhisa Kurata  京都大学, 医学研究科, 助教 (40836178)

Project Period (FY) 2020-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
KeywordsDeep learning / MRI / Endometrial cancer / CNN / Segmentation / endometrial cancer / deep learning / segmentation / 子宮体癌 / 子宮頸癌 / 深層学習 / セグメンテーション / 子宮 / 卵巣
Outline of Research at the Start

近年の医用画像解析では、画像から腫瘍の悪性度や予後など、解剖学的情報以上のデータを抽出する研究が行われている。従来の解析手法では、画像上での腫瘍の関心領域設定、画像的特徴量の設定を手動で行うのが一般的であるが、関心領域設定の労力が大きい、適切な特徴量の選択が難しい、という問題点が存在する。一方で、CNNでは、画像データ自体を直接解析することができるため、関心領域や特徴量設定の過程を全て自動化可能である。本研究では申請者らがMRI上での子宮の自動セグメンテーションを実現した手法を応用し、実臨床で適用可能な産婦人科MRIの自動診断プログラムを作成する。

Outline of Final Research Achievements

In this project, we realized automatic segmentation and staging of uterine endometrial cancer on MRI using convolutional neural networks, and reported the results at national and international conferences and in research papers. In parallel, we are continuing research to extend the same method to bladder cancer imaging, and have already reported some of the results in papers. We also incorporated Vision Transformer, a new deep learning method proposed during the research period, and showed that the method is applicable to medical image analysis of obstetrics and gynecology and urology. In the future, we plan to conduct a multicenter study for external validation of the developed model.

Academic Significance and Societal Importance of the Research Achievements

最近ではいわゆる人工知能を用いた医用画像解析が盛んに行われているが、産婦人科領域に関する研究報告は比較的少なかった。本研究では、MRI上で子宮体癌の検出や病期診断(深達度の判定)の自動化を実現することで、産婦人科領域の画像診断における深層学習の有用性を示した。この種の研究報告が増えることで、他の領域と同様に、産婦人科画像診断の質的向上や個別化医療を目指した画像解析が進展していくと考えられる。

Report

(4 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (16 results)

All 2023 2022 2021

All Journal Article (8 results) (of which Peer Reviewed: 8 results,  Open Access: 4 results) Presentation (7 results) (of which Int'l Joint Research: 6 results) Book (1 results)

  • [Journal Article] Automatic segmentation of bladder cancer on MRI using a convolutional neural network and reproducibility of radiomics features: a two-center study2023

    • Author(s)
      Moribata Yusaku、Kurata Yasuhisa、Nishio Mizuho、Kido Aki、Otani Satoshi、Himoto Yuki、Nishio Naoko、Furuta Akihiro、Onishi Hiroyuki、Masui Kimihiko、Kobayashi Takashi、Nakamoto Yuji
    • Journal Title

      Scientific Reports

      Volume: 13 Issue: 1 Pages: 628-628

    • DOI

      10.1038/s41598-023-27883-y

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Label Distribution Learning for Automatic Cancer Grading of Histopathological Images of Prostate Cancer2023

    • Author(s)
      Nishio Mizuho、Matsuo Hidetoshi、Kurata Yasuhisa、Sugiyama Osamu、Fujimoto Koji
    • Journal Title

      Cancers

      Volume: 15 Issue: 5 Pages: 1535-1535

    • DOI

      10.3390/cancers15051535

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Risk Stratification for Pregnancies Diagnosed With Fetal Growth Restriction Based on Placental <scp>MRI</scp>2022

    • Author(s)
      Himoto Yuki、Fujimoto Koji、Kido Aki、Otani Satoshi、Matsumoto Yuka Kuriyama、Mogami Haruta、Nakao Kyoko Kameyama、Kurata Yasuhisa、Moribata Yusaku、Chigusa Yoshitsugu、Minamiguchi Sachiko、Mandai Masaki、Nakamoto Yuji
    • Journal Title

      Journal of Magnetic Resonance Imaging

      Volume: 56 Issue: 6 Pages: 1650-1658

    • DOI

      10.1002/jmri.28298

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Pathological evaluation of human pancreatic tissue injuries by machine compression for computer-aided safe pancreatic compression.2022

    • Author(s)
      K. Inai, D. Kim, N. Takano, M. Uno, S. Noriki, H. Naiki, E. Kobayashi
    • Journal Title

      Int J CARS

      Volume: suppl1 Issue: S1 Pages: 54-55

    • DOI

      10.1007/s11548-022-02635-x

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Automatic segmentation of uterine endometrial cancer on multi-sequence MRI using a convolutional neural network2021

    • Author(s)
      Kurata Yasuhisa、Nishio Mizuho、Moribata Yusaku、Kido Aki、Himoto Yuki、Otani Satoshi、Fujimoto Koji、Yakami Masahiro、Minamiguchi Sachiko、Mandai Masaki、Nakamoto Yuji
    • Journal Title

      Scientific Reports

      Volume: 11 Issue: 1 Pages: 14440-14440

    • DOI

      10.1038/s41598-021-93792-7

    • NAID

      120007125725

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Differentiation of uterine low-grade endometrial stromal sarcoma from rare leiomyoma variants by magnetic resonance imaging2021

    • Author(s)
      Himoto Yuki、Kido Aki、Sakata Akihiko、Moribata Yusaku、Kurata Yasuhisa、Suzuki Ayako、Matsumura Noriomi、Shitano Fuki、Kawahara Seiya、Kubo Shigeto、Umeoka Shigeaki、Minamiguchi Sachiko、Mandai Masaki
    • Journal Title

      Scientific Reports

      Volume: 11 Issue: 1 Pages: 19124-19124

    • DOI

      10.1038/s41598-021-98473-z

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Diagnostic performance of preoperative MR imaging findings for differentiation of uterine leiomyoma with intraligamentous growth from subserosal leiomyoma2021

    • Author(s)
      Yajima Ryo、Kido Aki、Kuwahara Ryo、Moribata Yusaku、Chigusa Yoshitsugu、Himoto Yuki、Kurata Yasuhisa、Matsumoto Yuka、Otani Satoshi、Nishio Naoko、Minamiguchi Sachiko、Mandai Masaki、Nakamoto Yuji
    • Journal Title

      Abdominal Radiology

      Volume: 46 Issue: 8 Pages: 4036-4045

    • DOI

      10.1007/s00261-021-03042-7

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Diffusion‐weighted imaging of uterine adenomyosis: Correlation with clinical backgrounds and comparison with malignant uterine tumors2021

    • Author(s)
      Yajima Ryo、Kido Aki、Kurata Yasuhisa、Fujimoto Koji、Nakao Kyoko Kameyama、Kuwahara Ryo、Nishio Naoko、Minamiguchi Sachiko、Mandai Masaki、Togashi Kaori
    • Journal Title

      Journal of Obstetrics and Gynaecology Research

      Volume: 47 Issue: 3 Pages: 949-960

    • DOI

      10.1111/jog.14621

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Presentation] Prediction of deep myometrial invasion of uterine endometrial cancer on MRI using Vision Transformer2022

    • Author(s)
      Yasuhisa Kurata , Mizuho Nishio , Yuka Matsumoto , Satoshi Otani , Yusaku Moribata , Yuki Himoto , Aki Kido , Masaki Mandai , Yuji Nakamoto
    • Organizer
      Computer Assisted Radiology and Surgery 2022
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Automatic segmentation of bladder cancer on diffusion weighted images using a convolutional neural network2022

    • Author(s)
      Yusaku Moribata , Yasuhisa Kurata , Mizuho Nishio , Aki Kido , Satoshi Otani , Yuki Himoto , Naoko Nishio , Akihiro Furuta , Kimihiko Masui , Takashi Kobayashi , Yuji Nakamoto
    • Organizer
      2022 ISMRM & SMRT Annual Meeting & Exhibition
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Automatic segmentation of bladder cancer on diffusion weighted images using a convolutional neural network2022

    • Author(s)
      Yusaku Moribata , Yasuhisa Kurata , Mizuho Nishio , Aki Kido , Yuka Matsumoto , Satoshi Otani , Yuki Himoto , Akihiro Furuta , Kimihiko Masui , Yuji Nakamoto
    • Organizer
      The 81st Annual Meeting of the Japan Radiological Society
    • Related Report
      2022 Annual Research Report
  • [Presentation] Automatic segmentation of bladder cancer on MRI using a convolutional neural network and reproducibility of radiomics features2022

    • Author(s)
      Yusaku Moribata, Yasuhisa Kurata, Mizuho Nishio, Aki Kido, Satoshi Otani, Yuki Himoto, Naoko Nishio, Akihiro Furuta, Kimihiko Masui, Takashi Kobayashi, Yuji Nakamoto
    • Organizer
      2022 ISMRM & SMRT Annual Meeting & Exhibition
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] Prediction of deep myometrial invasion of uterine endometrial cancer on MRI using Vision Transformer2022

    • Author(s)
      Y. Kurata, M. Nishio, Y. Matsumoto, S. Otani, Y. Moribata, Y. Himoto, A. Kido, M. Mandai, Y. Nakamoto
    • Organizer
      CARS 2022 Computer Assisted Radiology and Surgery
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] Automatic segmentation of uterine endometrial cancer on MRI with convolutional neural network2021

    • Author(s)
      Yasuhisa Kurata, Mizuho Nishio, Yusaku Moribata, Aki Kido, Yuki Himoto, Satoshi Otani, Koji Fujimoto, Masahiro Yakami, Sachiko Minamiguchi, Masaki Mandai, Yuji Nakamoto
    • Organizer
      2021 ISMRM & SMRT Annual Meeting & Exhibition
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] Automatic segmentation of uterine endometrial cancer on MRI with convolutional neural network2021

    • Author(s)
      Yasuhisa Kurata
    • Organizer
      International Society for Magnetic Resonance in Medicine
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Book] Step up MRI 2021 II MRIにおけるAIの研究開発・臨床応用の最新動向 4.MR画像における子宮体がんの自動セグメンテーション2021

    • Author(s)
      倉田靖桐 , 西尾瑞穂 , 森畠裕策 , 木戸晶 , 中本裕士
    • Total Pages
      4
    • Publisher
      インナービジョン
    • Related Report
      2021 Research-status Report

URL: 

Published: 2020-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi