• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of a Personalized Optimal Transplantation Procedure Proposal System using Machine Learning for Allogeneic Hematopoietic Cell Transplantation

Research Project

Project/Area Number 20K17386
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 54010:Hematology and medical oncology-related
Research InstitutionOsaka Metropolitan University (2022-2023)
Osaka City University (2020-2021)

Principal Investigator

Okamura Hiroshi  大阪公立大学, 大学院医学研究科, 講師 (00803149)

Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords機械学習 / 造血幹細胞移植 / 予後予測 / 同種造血幹細胞移植 / 個別化医療
Outline of Research at the Start

現在、同種造血細胞移植の実臨床において患者個別の最適移植法の選択(ドナー選択、前処置レジメン、GVHD予防法など)は、様々な既報告結果を臨床医が経験的に組み合わせた上で行われており、その方法論には客観性に課題が残されている。
本研究では、同種造血細胞移植領域において機械学習によって得られる客観的な予後予測情報を患者個別の最適な移植法選択に活用することで、移植予後向上を目指す。

Outline of Final Research Achievements

In this study, a machine learning survival prediction model was developed based on the data obtained from allogeneic hematopoietic stem cell transplantation. Furthermore, an algorithm and a web application were developed to propose an optimal transplantation procedure considering an individual patient's disease characteristics and situation. The clinical value of this algorithm was retrospectively evaluated. Consistency between the transplantation procedure proposed by the machine learning model and the transplantation procedure actually used was shown to be a favorable prognostic factor for the clinical outcome. In the future, it will be desirable to evaluate the clinical value of this algorithm through prospective studies for clinical applications.

Academic Significance and Societal Importance of the Research Achievements

本研究の結果から、機械学習モデルによって提案される患者個別の病状や状況に応じた移植法を臨床判断に活用することで、移植予後の改善が得られる可能性があることが示された。今後、従来治療群と本アルゴリズムを臨床活用した群の移植予後を比較するランダム化比較試験を行い本アルゴリズムの臨床的意義を示すことにより、移植領域における情報薬という新たな治療モダリティの社会実装が期待される。

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (6 results)

All 2023 2022 2020 Other

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (3 results) (of which Int'l Joint Research: 1 results) Remarks (1 results) Patent(Industrial Property Rights) (1 results)

  • [Journal Article] Interactive web application for plotting personalized prognosis prediction curves in allogeneic hematopoietic cell transplantation using machine learning2020

    • Author(s)
      Okamura Hiroshi、Nakamae Mika、Koh Shiro、Nanno Satoru、Nakashima Yasuhiro、Koh Hideo、Nakane Takahiko、Hirose Asao、Hino Masayuki、Nakamae Hirohisa
    • Journal Title

      Transplantation

      Volume: Publish Ahead of Print Issue: 5 Pages: 1090-1096

    • DOI

      10.1097/tp.0000000000003357

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Presentation] ワークショップ1「AI/Machine Learning」医療AI/機械学習:医療情報学の視点から2023

    • Author(s)
      岡村浩史
    • Organizer
      第45回 日本造血・免疫療法学会総会
    • Related Report
      2022 Research-status Report
  • [Presentation] 同種造血幹細胞移植における機械学習を用いた患者個別の最適移植法推奨戦略2022

    • Author(s)
      Hiroshi Okamura, Hirohisa Nakamae, Mika Nakamae, Daijiro Kabata, Hisako Yoshida, Ayumi Shintani, Naoyuki Uchida, Noriko Doki, Takahiro Fukuda, Yukiyasu Ozawa, Masatsugu Tanaka, Ikegame Kazuhiro, Tetsuya Eto, Masashi Sawa, Takafumi Kimura, Junya Kanda, Yoshiko Atsuta, and Masayuki Hino.
    • Organizer
      第44回日本造血・免疫細胞療法学会総会
    • Related Report
      2021 Research-status Report
  • [Presentation] Personalized strategy for allogeneic stem cell transplantation guided by machine learning: a real-world data analysis of the Japanese Transplant Registry Unified Management Program2022

    • Author(s)
      Hiroshi Okamura, Hirohisa Nakamae, Mika Nakamae, Daijiro Kabata, Hisako Yoshida, Ayumi Shintani, Naoyuki Uchida, Noriko Doki, Takahiro Fukuda, Yukiyasu Ozawa, Masatsugu Tanaka, Ikegame Kazuhiro, Tetsuya Eto, Masashi Sawa, Takafumi Kimura, Junya Kanda, Yoshiko Atsuta, and Masayuki Hino.
    • Organizer
      48th Annual Meeting of the EBMT (European Society for Blood and Marrow Transplantation)
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Remarks] 機械学習を用いた患者様個別の同種造血細胞移植予後計算アプリケーション

    • URL

      https://predicted-os-after-transplantation.shinyapps.io/RSF_model/

    • Related Report
      2020 Research-status Report
  • [Patent(Industrial Property Rights)] 特許権2023

    • Inventor(s)
      岡村 浩史
    • Industrial Property Rights Holder
      岡村 浩史
    • Industrial Property Rights Type
      特許
    • Industrial Property Number
      2023-001032
    • Filing Date
      2023
    • Related Report
      2022 Research-status Report

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi