• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Machine learning prediction of hematoma growth in acute intracerebral hemorrhage

Research Project

Project/Area Number 20K17947
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 56010:Neurosurgery-related
Research InstitutionDepartment of Clinical Research, Nationai Hospital Organization Mie Chuo Medical Center

Principal Investigator

Tanioka Satoru  独立行政法人国立病院機構三重中央医療センター(臨床研究部), その他部局等, 脳神経外科医師 (80838003)

Project Period (FY) 2020-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords機械学習 / 脳出血 / 増大 / 予測
Outline of Research at the Start

脳出血は発症後約3割で増大を認めると言われており,入院当初に血腫増大の予測を行うことは,治療戦略を立てる上で極めて重要である.機械学習は人工知能の根幹となる技術で,近年様々な分野で応用されているが,データの分類やデータから導き出される結果の予測に秀でている.本研究では,脳出血患者の入院時の年齢や性別,採血データ,既往歴等の臨床情報と,血腫量や血腫吸収値の特徴等のCT所見を,機械学習を用いて解析し,血腫増大の予測モデルを作成することを目的とする.精度の高い血腫増大予測モデルが作成できれば,的確な外科的治療適応の判断や入院病床の選択が可能となり,脳出血の医療費における経済的効果も高い.

Outline of Final Research Achievements

Hematoma expansion occasionally occurs in patients with acute intracerebral hemorrhage (ICH), associating with poor outcome. Machine learning (ML) approaches perform well in outcome prediction. Patients with acute ICH from three hospitals (n=351) and those from another hospital (n=71) were retrospectively assigned to the development and validation cohorts, respectively. Machine learning (ML) models were evaluated for their performance on the patient data in the validation cohort, which was compared with previous scoring methods, the BAT, BRAIN, and 9-point scores.
The k-NN algorithm achieved the highest area under the receiver operating characteristic curve (AUC) of 0.790 among all ML models, and the sensitivity, specificity, and accuracy were 0.846, 0.733, and 0.775, respectively. The BRAIN score achieved the highest AUC of 0.676 among all previous scoring methods, which was lower than the best ML model by k-NN algorithm (p=0.016).

Academic Significance and Societal Importance of the Research Achievements

機械学習は人工知能の根幹となる技術で,近年様々な分野で応用されているが,データの分類やデータから導き出される結果の予測に秀でている.本研究では,脳出血患者の入院時の年齢や性別,採血データ,既往歴等の臨床情報と,血腫量や血腫吸収値の特徴等のCT所見を,機械学習を用いて解析し,血腫増大の予測モデルを作成した.
使用したアルゴリズム,データについては,第三者による使用や検証が可能な状態とすることが重要である.アルゴリズム,匿名化したデータはインターネット上にアップロードした.

Report

(3 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • Research Products

    (4 results)

All 2021

All Presentation (4 results) (of which Invited: 1 results)

  • [Presentation] 機械学習を用いた脳出血の増大予測2021

    • Author(s)
      谷岡 悟
    • Organizer
      第46回日本脳卒中学会学術集会
    • Related Report
      2021 Annual Research Report
  • [Presentation] 脳血管障害領域における臨床所見と画像情報を組み合わせた機械学習モデルの作成2021

    • Author(s)
      谷岡悟、矢合哲士、田中克浩、石田藤麿
    • Organizer
      第50回日本神経放射線学会
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] 機械学習を用いた脳出血の増大予測2021

    • Author(s)
      谷岡 悟
    • Organizer
      第75回国立病院総合医学会
    • Related Report
      2021 Annual Research Report
  • [Presentation] 機械学習を用いた脳出血の増大予測2021

    • Author(s)
      谷岡 悟
    • Organizer
      第46回 日本脳卒中学会学術集会
    • Related Report
      2020 Research-status Report

URL: 

Published: 2020-04-28   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi