Development of a system for predicting the onset of hypertensive disorder of pregnancy using an AI system
Project/Area Number |
20K18168
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 56040:Obstetrics and gynecology-related
|
Research Institution | Yamaguchi University |
Principal Investigator |
|
Project Period (FY) |
2020-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2020: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | 妊娠高血圧症候群 / AI / 妊婦健診データ / 妊娠高血圧 / 発症予測 / 妊娠高血圧症 / 妊婦健診 |
Outline of Research at the Start |
妊娠高血圧症候群は妊婦の約 5 %に発症する。重 症化すると母体肝腎機能障害や胎児発育不全、常位胎盤早期剥離といった母体・胎児合併症 を引き起こし、母児の生命予後や出生児の後遺障害に直結する重要な疾患である。本疾患の発 症メカニズムは解明されつつあるが、その一方で、発症予測に関しては決定的なものは無いため、発症して既に重症化しつつある状態で診断し、医療介入を開始しているのが現状である。本研究では、妊娠中に全妊婦が定期的に受診する妊婦健診のデータを活用し、 人工知能 (AI) を用いてHDP発症予測システムを確立する。
|
Outline of Final Research Achievements |
Blood pressure, urinary protein, and body mass index (BMI) data were obtained from the pregnant women's health examination data. A hidden Markov model (HMM) was used for statistical machine learning. We also attempted to extend the conventional HMM to allow time (weeks of pregnancy) dependent covariates to be modeled as parameters of the state transition matrix. Using this Markov-dependent mixture model, we calculated the number of states that can efficiently classify the state at the time of the antenatal checkup using systolic blood pressure, diastolic blood pressure, and proteinuria as response variables, and the transition probability to estimate the state at the next checkup at each checkup session. In the validation data, the accuracy of predicting the onset of HDP during pregnancy and the accuracy of predicting the onset of HDP thereafter from data before 31 weeks of pregnancy were calculated.
|
Academic Significance and Societal Importance of the Research Achievements |
本予測システムは我が国で統一された妊婦定期健診データに基づいているため、新たなデータ取得を必要とすることなく、そのまま他施設での運用が可能である。本研究において、AIを用いたHDP発症予測システムが確立されれば、妊娠管理中に数週間先のHDP発症を予測することが可能となり、早期の治療介入が可能となる。HDPは突然に発症して急激に増悪する疾患のため、発症前に高精度に予測できることは極めて重要な意義を持つ。
|
Report
(3 results)
Research Products
(1 results)