Project/Area Number |
20K18576
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 57040:Regenerative dentistry and dental engineering-related
|
Research Institution | Kyushu University |
Principal Investigator |
Kishida Ryo 九州大学, 歯学研究院, 助教 (90823211)
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Project Status |
Discontinued (Fiscal Year 2023)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2023: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
|
Keywords | アパタイト / 多孔体 / 人工骨 / 骨再生 / 生体吸収性 / 骨伝導性 / 気孔連通性 |
Outline of Research at the Start |
骨と同じ無機成分「炭酸アパタイト」からなる新規人工骨を作製し、その生体反応を調べることで、「材料-生体」間相互作用の学理を構築する一助を目指す。特に、組織液や細胞が材料内部に侵入可能な「連通気孔」と、材料表面積を増大させる「微小気孔」を有する炭酸アパタイト三次元多孔体を作製し、気孔分布の生体反応への影響を評価する。
|
Outline of Final Research Achievements |
This study aimed to fabricate carbonate apatite blocks with distinct distribution of macropores and micropores and to investigate the biological reactions. Porous carbonate apatite was prepared by using crystal growth (setting reaction) of gypsum to prepare a precursor, followed by heat treatment and dissolution-precipitation reaction. Macropore- and micropore-distributions were controlled by limiting the amount of solvent for the crystal growth and the heat treatment temperature, respectively. Macroporosity (and pore interconnectivity) was successfully enhanced by controlling the amount of solvent. Small micropores with high surface area was achieved by lowering treatment temperatures. In vivo evaluations demonstrated the effectiveness of these material designs.
|
Academic Significance and Societal Importance of the Research Achievements |
超高齢社会を迎えた本邦において、骨再生術の需要が高まっており、高い骨再生能を有する人工骨が必要である。これまでに気孔サイズの骨再生の影響が概念的に体系化されてきたが、有効な気孔サイズや気孔連通性(気孔同士の接続率)との関係、マクロ気孔とミクロ気孔の好ましい組合せについては、コンセンサスが得られていない。本研究では、ミクロ気孔径を一定に保ちつつマクロ気孔径(およびマクロ気孔連通性)を制御する方法と、マクロ気孔径を一定に保ちつつミクロ気孔径を小さくする(表面積を向上する)方法を提案・開発し、その骨再生への有用性を示すことができた。本研究の結果に基づいた人工骨開発の指導原理の確立が期待される。
|