Project/Area Number |
20K19815
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 60100:Computational science-related
|
Research Institution | Nagoya University |
Principal Investigator |
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2023: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | オイラー型解法 / 構造流体連成問題 / 界面不連続性 / 流体構造連成解析 / 高レイノルズ数流れ / 半陰解法 / 粘弾性体 / 固定直交メッシュ / 並列計算 |
Outline of Research at the Start |
近年,激甚化する強風災害に強い都市構造物の検討に有用な数値シミュレーション法を開発する.具体的には,申請者が開発してきたオイラー型構造-流体統一連成解法を,高レイノルズ数の構造-流体連成問題の数値解析が可能な手法へ拡張することを目標とする.高レイノルズ数流れでの固体変形計算の安定化法を開発・妥当性を定量的に検証し,各種の空力不安定振動が発生する機構および計算時間を明らかにする.
|
Outline of Final Research Achievements |
Eulerian methods are well-suited for the analysis of large deformations in structures and for large-scale parallel computations. However, in the analysis of structures with high Young’s modulus, conventional Eulerian methods have faced challenges with numerical stability. The causes can be attributed to two main factors: numerical instability due to discontinuities in velocity gradients, and time increment constraints imposed by the Courant condition for solid stress waves. Therefore, this study proposes a method that resolves the former issue through the Reference map technique and mitigates the latter using a semi-implicit scheme. In benchmark problems where the interface velocity gradient is discontinuous, it was found that the proposed method is superior in terms of execution time when compared to explicit methods, and also shows an advantage in execution time in regions with high elasticity rates when compared to traditional velocity gradient methods.
|
Academic Significance and Societal Importance of the Research Achievements |
この研究成果は、乱流と伴う気流と構造物の相互作用シミュレーションや、金属材料など弾性率が高い構造物の超並列シミュレーションを実現する要素技術となるものである。これにより,社会基盤構造物などの安全性評価において,より正確かつ効率的な解析が可能となり,安全性の向上に寄与することが期待される.さらに,この方法論は,氾濫解析など自然災害時の構造物の挙動予測にも応用でき,災害リスクの低減にも貢献する可能性がある.
|