Initiation of Traumatic Brain Injury: Predicting Cellular Damage at the Molecular Scale
Project/Area Number |
20K20169
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 90110:Biomedical engineering-related
|
Research Institution | Osaka University |
Principal Investigator |
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2022: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2020: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | 分子動力学シミュレーション / 生体膜 / せん断流れ / 不安定性 / 分子動力学法 / リン脂質二重膜 / 破断 / 張力 / うねり / 微小孔 / 引張 / 血液脳関門 / 非平衡 |
Outline of Research at the Start |
外傷性脳損傷は,頭部に外部から機械的衝撃が作用した際に起こる障害で,様々な脳機能障害を引き起こす.外傷性脳損傷では,機械的衝撃が細胞や細胞間の接続関係に損傷を与えることは知られているが,損傷に至るまでと損傷から発症に至るまでに何が起こっているかは未だ明らかになっていない.本研究では,分子動力学シミュレーションを用いることで,細胞まで伝わってきた力学的な負荷が分子スケールでどのように細胞の“損傷”につながるかを明らかにする.特に,細胞膜の損傷と脳血管の内皮細胞間の密な接続の損傷に着目し,それらの力学的負荷による分子レベルでの構造変化,そして物質透過性といったマクロな物性値の変化を明らかにする.
|
Outline of Final Research Achievements |
When an impact is applied to the head, non-physiological flow occurs within the interstitial fluid of the cerebral parenchyma. To investigate the effect of this flow on the cell membrane at the molecular level, molecular dynamics simulations of phospholipid bilayers under shear flow were conducted. The results revealed that the membrane structure becomes unstable and eventually ruptures when the applied shear rate exceeds a critical value. The critical shear rate could be predicted through linear stability analysis. Additionally, it was observed that the membrane experiences negative tension and undergoes compression below the critical shear rate.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究は,せん断流れがリン脂質二重膜に与える分子レベルでの影響を構造・力学的な面から明らかにし,理論モデルと比較することで理論的な予想の限界を示し,補間を行った点で学術的な意義がある.これらの成果は力学的負荷による生体膜の損傷というモデル化が難しかった部分について基礎的な知見を与えるもので,今後の膜損傷予測モデルの基盤になると期待される.また,近年の細胞工学技術の発展により,細胞単体や細胞組織を工学的に操作する必要性が増している.本研究で明らかにした力学的負荷と膜の関係は,外傷性脳損傷だけでなく,細胞操作時に細胞に与えられる負荷の許容範囲を力学的根拠に基づいて定める助けになりうる.
|
Report
(4 results)
Research Products
(9 results)