Ultra-rapid lilquid phase epitaxy of SiC using nanoparticles
Project/Area Number |
20K20355
|
Project/Area Number (Other) |
18H05338 (2018-2019)
|
Research Category |
Grant-in-Aid for Challenging Research (Pioneering)
|
Allocation Type | Multi-year Fund (2020) Single-year Grants (2018-2019) |
Review Section |
Medium-sized Section 26:Materials engineering and related fields
|
Research Institution | The University of Tokyo |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
宮川 鈴衣奈 名古屋工業大学, 工学(系)研究科(研究院), 助教 (10635197)
堀池 巧 東京大学, 生産技術研究所, 特任助教 (10774119)
|
Project Period (FY) |
2018-06-29 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥25,480,000 (Direct Cost: ¥19,600,000、Indirect Cost: ¥5,880,000)
Fiscal Year 2020: ¥5,070,000 (Direct Cost: ¥3,900,000、Indirect Cost: ¥1,170,000)
Fiscal Year 2019: ¥6,890,000 (Direct Cost: ¥5,300,000、Indirect Cost: ¥1,590,000)
Fiscal Year 2018: ¥13,520,000 (Direct Cost: ¥10,400,000、Indirect Cost: ¥3,120,000)
|
Keywords | SiC / 液相成長 / エピタキシー / 合金溶液 / ナノ粒子 |
Outline of Research at the Start |
代表者らはGibbs-Thomson効果を利用した局所的な高過飽和を付与する液相成長法を考案している。本研究では、超高速成長の成長速度の支配因子の解明、ドーピングの定量的制御手法の検討、ならびに局所加熱を応用したメサ構造の堆積技術の開発研究を実施する。
|
Outline of Final Research Achievements |
In this study, as a high-speed epitaxial growth method that can be an alternative to the CVD method, we proposed a liquid phase growth method using high supersaturation by the Gibbs-Thomson effect, and conducted a basic study of ultrafast growth liquid phase epitaxial growth. For high-speed growth conditions on the 4H-SiC (000-1) crystals growth from solvent alloys dispersed with SiC fine particles, a slurry preparation technique using organic solvents was established for the optimum arrangement of solvent to achieve uniform grown layer. Then after systematic investigation of the solvent alloy system, we succeeded in obtaining epitaxial growth of more than 20 μm and 50 μm, respectively, in the process of holding 1600 °C for 1 min and 1800 °C for 1 min and raising and lowering the temperature, respectively.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究は半導体成膜プロセスとして検討されたことがなかった微粒子のGibbs-Thomson効果を積極利用した高速成膜プロセスについて、微粒子と合金の高温物性に着目して化学輸送現象を調査し、微粒子の特異な非成長挙動が、目的の基板成膜に有効に作用する可能性を見出した。また低エネルギー、低原料消費プロセスとして、産業応用の可能性を国際産学連携により検討を開始するなど、新たな瞬時製膜法としての期待を集めている。
|
Report
(4 results)
Research Products
(5 results)