Development of high-performance, safe and low-cost solid energy-storage capacitors
Project/Area Number |
20K20439
|
Project/Area Number (Other) |
19H05515 (2019)
|
Research Category |
Grant-in-Aid for Challenging Research (Pioneering)
|
Allocation Type | Multi-year Fund (2020) Single-year Grants (2019) |
Review Section |
Medium-sized Section 26:Materials engineering and related fields
|
Research Institution | Tokyo Institute of Technology |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
保科 拓也 東京工業大学, 物質理工学院, 准教授 (80509399)
安原 颯 東京工業大学, 物質理工学院, 助教 (20880032)
武田 博明 東京工業大学, 物質理工学院, 准教授 (00324971)
|
Project Period (FY) |
2019-06-28 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥26,000,000 (Direct Cost: ¥20,000,000、Indirect Cost: ¥6,000,000)
Fiscal Year 2022: ¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2021: ¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2020: ¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2019: ¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
|
Keywords | 固体イオンキャパシタ / 蓄電 / 固体電解質 / エネルギー密度 / キャパシタ / 蓄電素子 / リチウムイオン伝導体 / 蓄電キャパシタ / 地球温暖化 |
Outline of Research at the Start |
異常気象をもたらす地球温暖化を抑制するためのキーデバイスは高性能蓄電装置である。電池に比べキャパシタは、蓄積されるエネルギーが物質量で決まらない、エネルギー変換を必要としないなどの利点がある。本研究では、固体中のイオンの長距離移動を分極発現機構とする固体イオンキャパシタを開発する。固体電解質にはリチウム含有酸化物ガラス、電極にはカーボンコートアルミニウムを使用し、両者の積層一体化は急速昇温焼結法により行う。電極界面に保護層をいれることで高電圧化を図り、最終的にリチウムイオン電池のエネルギー密度(100Wh/kg)に匹敵する固体キャパシタのプロトタイプを作る。
|
Outline of Final Research Achievements |
This research was carried out with the aim of creating a new energy storage capacitors that are safe without degradation. The developed capacitor is an electric double layer capacitor that uses a solid electrolyte. By introducing a special nanostructure into the electrolyte, it is possible to apply a high voltage and improve the energy density. In order to experimentally verify the principle of this HV Solid Ionic Capacitor, Li-type and Na-type samples were prepared and their charge-discharge characteristics were measured. As a result, it was confirmed that the energy density was improved by high-voltage driving by introducing nanostructures. Furthermore, when the energy density was calculated with respect to the size of the nanostructures, the introduction of nanostructures of about 300 nm resulted in performance exceeding that of lithium batteries.
|
Academic Significance and Societal Importance of the Research Achievements |
地球温暖化の抑制には優れた蓄電装置の開発が必須である。キャパシタは電気エネルギーを変換せず蓄えるので、劣化・発火の問題がない理想的な蓄電素子であるが、現状の電気二重層キャパシタは、液体電解質の電気分解のためエネルギー密度に上限がある。本研究で開発したHV固体イオンキャパシタは、特殊なナノ構造を導入した固体電解質を用いた電気二重層キャパシタである。ナノ構造により高電圧駆動が可能になりエネルギー密度が向上することが実験的に検証されている。エネルギー密度はナノ構造の微細化でさらに向上が可能である。このキャパシタは日本の素材産業でしか作れないので、実用化に成功すれば日本経済の復活に大きく貢献する。
|
Report
(5 results)
Research Products
(10 results)