Development of an non-bio and biological hybrid artificial photosynthesis system for acetate production
Project/Area Number |
20K20486
|
Project/Area Number (Other) |
19H05582 (2019)
|
Research Category |
Grant-in-Aid for Challenging Research (Pioneering)
|
Allocation Type | Multi-year Fund (2020) Single-year Grants (2019) |
Review Section |
Medium-sized Section 64:Environmental conservation measure and related fields
|
Research Institution | Hokkaido University |
Principal Investigator |
Okabe Satoshi 北海道大学, 工学研究院, 教授 (10253816)
|
Co-Investigator(Kenkyū-buntansha) |
渡辺 精一 北海道大学, 工学研究院, 教授 (60241353)
佐藤 久 北海道大学, 工学研究院, 教授 (80326636)
|
Project Period (FY) |
2019-06-28 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥25,870,000 (Direct Cost: ¥19,900,000、Indirect Cost: ¥5,970,000)
Fiscal Year 2021: ¥6,110,000 (Direct Cost: ¥4,700,000、Indirect Cost: ¥1,410,000)
Fiscal Year 2020: ¥8,190,000 (Direct Cost: ¥6,300,000、Indirect Cost: ¥1,890,000)
Fiscal Year 2019: ¥11,570,000 (Direct Cost: ¥8,900,000、Indirect Cost: ¥2,670,000)
|
Keywords | 光電気化学太陽電池(PEC) / 光水分解 / 複合金属ナノ酸化物半導体 / ホモ酢酸生成細菌 / 酢酸生成 / バイオ光電気化学太陽電池(Bio-PEC) / ZnO/CuO / 人工光合成 / 光電気化学太陽電池 / 半導体光触媒 / バイオ燃料電池 / CO2還元有価物合成 / 水の光分解 |
Outline of Research at the Start |
本研究では、エネルギー危機および地球温暖化の解決策として、無尽蔵の太陽光エネルギーと水および不要な二酸化炭素(CO2)から有用な化 学物質を人工的に作りだす「非生物・生物ハイブリッド人工光合成」システムを構築する。具体的には、光電気化学太陽電池(PEC)とバイオ燃 料電池(MFC)から成る「明反応系」とホモ酢酸生成バイオリアクターの「暗反応系」を組み合わせた、CO2と水を原料とし太陽光エネルギー( 可視光)と廃水をエネルギー源とした、常温常圧、中性条件下で酢酸(2炭素化合物)を生産可能なバイオ‐光電気化学太陽電池ハイブリッド システムを構築する
|
Outline of Final Research Achievements |
Bio-photoelectrochemical (Bio-PEC) cells have much attention due to their ability to convert solar energy and wastewater energy into electrical or chemical energy. To develop Bio-PECs, three-dimensional heterostructures ZnO/CuO NFRs, ZnO nanorods (NRs) on CuO nanowire (NWs) (ZnO@CuO) with high photoelectrochemical performance were successfully synthesized via thermal oxidation and followed by UV irradiation in pure water at ambient temperature and pressure. The longer UV irradiation time significantly improved the photocurrent generation due to the higher light absorption, larger BET specific surface area, and lower charge recombination opportunity. However, ZnO sputtering was not necessarily. The obtained photocurrent density was about three times higher than the previously reported values for ZnO/CuO composites with a similar three-dimensional nanostructure.
|
Academic Significance and Societal Importance of the Research Achievements |
これまでの殆どの研究は、太陽光エネルギーを水素エネルギーに変換することのみに焦点が置かれていた。しかしながら、水素は気体であり貯蔵と輸送には安全性の確保が重要でありコストも高くなる。これに対して、酢酸は常温常圧で液体であり貯蔵や輸送も比較的容易であるうえ、酢酸を原料とした高次の有機物、例えばエタノールやポリマー等の生産も可能である。さらに、提案する「非生物と生物のハイブリッド人工光合成」システムの建設・運転コストは廉価であり、もし、高効率に酢酸が生成できるようになれば、廃水処理の省エネ化、水環境保全、地球温暖化や気候変動の原因と考えられる二酸化炭素の削減にも大きく貢献できる。
|
Report
(4 results)
Research Products
(7 results)