Extension of the explorable range of muography to ocean with underwater tunnel
Project/Area Number |
20K20528
|
Research Category |
Grant-in-Aid for Challenging Research (Pioneering)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 17:Earth and planetary science and related fields
|
Research Institution | The University of Tokyo |
Principal Investigator |
|
Project Period (FY) |
2020-07-30 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥25,740,000 (Direct Cost: ¥19,800,000、Indirect Cost: ¥5,940,000)
Fiscal Year 2022: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2021: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2020: ¥24,700,000 (Direct Cost: ¥19,000,000、Indirect Cost: ¥5,700,000)
|
Keywords | ミュオグラフィ / 海域 / 海底トンネル / 海底 / ミュオン / 海 / 潮位 / 海域透視 |
Outline of Research at the Start |
海底トンネルを長さ1㎞の長大な海底下センサーとすることで、海底下における巨大物体透視技術「ミュオグラフィ」が将来新たにサイエンスターゲットを狙うための技術的課題の検証、解決を行い、海底トンネルを使用した海底ミュオグラフィの方法論を確立する。これまで難しかった海底岩盤の正確な絶対密度測定、海面昇降現象の面的なイメージング等が可能となり、海域のリアルタイムイメージング等へとつなぐ新たな技術開発を実施する。
|
Outline of Final Research Achievements |
Muography has been applied to monitoring of magma and to searching for the internal structure of the pyramid. However its observational targets have been restricted to the objects located on land. Muons are mainly produced in the upper troposphere, but their attenuation varies according to changes in the local atmospheric pressure. Land-based muographic observations are affected by these atmospheric pressure changes, making it extremely difficult to capture density variations with a precision < 1 percent. With this study, the world's highest muographic precision was achieved: 3 permil in 2 hours (1.5 permil in one lunar day) in terms of temporal variations in density. We succeeded in real-time monitoring of temporal variations in sea level.
|
Academic Significance and Societal Importance of the Research Achievements |
今後、HKMSDDをさまざまな海洋・海底下環境に活用することにより、国内外に散在する海底トンネルを活用した台風や、地震による津波、海底砂丘の移動による海底地形変化などの高精度イメージング測定などの応用展開が期待される。更に、海洋ダイナミクスによる海水密度変化などの測定や、東京湾海底における南関東ガス田に係る評価にも活用できるようになると考えられる。将来、海底トンネルから実際の深海底へと展開することにより、二酸化炭素貯留隔離(CCS)モニタリングや海底火山など、現場で連続的に海洋・海底下環境を監視・評価できる新しいイメージング技術としての応用展開が期待される。
|
Report
(4 results)
Research Products
(9 results)