Project/Area Number |
20K20531
|
Research Category |
Grant-in-Aid for Challenging Research (Pioneering)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 18:Mechanics of materials, production engineering, design engineering, and related fields
|
Research Institution | Nagoya University |
Principal Investigator |
JU YANG 名古屋大学, 工学研究科, 教授 (60312609)
|
Co-Investigator(Kenkyū-buntansha) |
徳 悠葵 名古屋大学, 工学研究科, 准教授 (60750180)
木村 康裕 名古屋大学, 工学研究科, 助教 (70803740)
|
Project Period (FY) |
2020-07-30 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥25,740,000 (Direct Cost: ¥19,800,000、Indirect Cost: ¥5,940,000)
Fiscal Year 2022: ¥6,110,000 (Direct Cost: ¥4,700,000、Indirect Cost: ¥1,410,000)
Fiscal Year 2021: ¥7,150,000 (Direct Cost: ¥5,500,000、Indirect Cost: ¥1,650,000)
Fiscal Year 2020: ¥12,480,000 (Direct Cost: ¥9,600,000、Indirect Cost: ¥2,880,000)
|
Keywords | 原子配列 / 結晶構造 / 力学特性 / 電子風力 / 金属材料 |
Outline of Research at the Start |
集団的な電子の衝撃力を電子風力として操作することにより金属原子に能動的に作用し、金属材料内原子配列の最適化や転位の移動・消滅などのナノスケール力学制御を実現することを目的としている。これによって、高密度電流による金属材料内の結晶構造、相組織などミクロスケールの組織制御を実現し、これまで両立困難であった金属材料の高強度と高延性や、高強度と高靭性などの力学特性のトレードオフを打破し、高強度、高延性、高靭性を同時に実現できる革新的力学特性を発現させる。さらに、これらの現象を明らかにすることにより、電子風力による金属材料内原子配列の最適化、そして組織制御に関する新しい原理を世界に先駆けて提案する。
|
Outline of Final Research Achievements |
The research aim is to realize nanoscale mechanical control such as optimization of atomic arrangement and dislocation migration and annihilation in metallic materials by introducing high-density electron current into bulk metal alloys and actively acting on metal atoms by manipulating collective electrons impact as electron wind force. This will realize micro-scale microstructural control such as crystal structure and phase structure in metallic materials by high-density current, thereby breaking the trade-off between mechanical properties such as high strength and high ductility, or high strength and high toughness, which have been difficult to achieve. The innovative mechanical properties that can simultaneously realize high strength, high ductility, and high and toughness at the same time will be created. Furthermore, we will propose the method to realize the optimization of atomic arrangement in metallic materials by electron wind force and for the control of crystal structure.
|
Academic Significance and Societal Importance of the Research Achievements |
電子風力による金属材料内組織の制御とメカニズムの解明への挑戦は世界に先駆けた斬新な研究であり、これまで両立困難であった力学特性のトレードオフをブレークスルーし、我が国の産業界に大きな変革をもたらすことにより、国際競争力維持・強化に大いに貢献できる。また、本研究は電子風力を金属内部の原子に意図的に負荷できることに着目し、原子配列の観点から原子移動に起因する転位の移動と消失、結晶構造と方位の変化、相組織の大きさと分布の変化など材料組織の制御手法を確立するとともに、その理論モデルの提案を目標としており、材料力学の学問体系を超え、新しい学理を追求するものであり、学術体系の変革が期待できる。
|