• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Discrete integration by parts on any convex polygon and design of structure-preserving numerical schemes

Research Project

Project/Area Number 20K20883
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 12:Analysis, applied mathematics, and related fields
Research InstitutionOsaka University

Principal Investigator

Furihata Daisuke  大阪大学, サイバーメディアセンター, 教授 (80242014)

Project Period (FY) 2020-07-30 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥6,110,000 (Direct Cost: ¥4,700,000、Indirect Cost: ¥1,410,000)
Fiscal Year 2022: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2021: ¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords離散部分積分公式 / 構造保存数値解法 / 差分法 / 対数差分 / 凸多角形分割 / 離散部分積分 / Gauss-Green の定理 / Stokes の定理
Outline of Research at the Start

本研究では任意次元での任意の凸多角形格子上での厳密な離散部分積分公式群を構成し,厳密な離散変分計算に適用して新しい構造保存数値解法を設計する.
構造保存数値解法を適用可能な離散格子の種類が限定的であることに対し,任意凸多角形格子その staggered 格子の双方の上でそれぞれ有限体積的に微分作用素を離散化し,応募者は同格子上で離散部分積分公式を直接に計算しながら導出する新しい方法を考案,そして必要な離散部分積分公式群を構成することに成功した.
本研究は,この新しい方法により数値解析の専門家の一つの理想である自由格子上での優れた数値計算が得,かつ発展させるものである.

Outline of Final Research Achievements

Based on the discretization of base space and differential operators, we constructed a discrete vector analysis for a piecewise constant function space on discrete convex polygons. We can discretely reproduce some primary laws of vector analysis and prove their properties. We also can design structure-preserving numerical schemes and verified this through numerical experiments.
We also investigated that applying fasten methods for existing structure-preserving numerical solutions to the new discretization method described above is possible. Our research has led to the construction of a new difference operator, a significant advancement in our field. This operator is spatially symmetric, ensuring high numerical stability, and allows for precise control of the error profile. We were able to introduce excellent properties as a nonlinear function of the function value on the reference point, a feature that has practical implications for error control in numerical analysis.

Academic Significance and Societal Importance of the Research Achievements

構造保存数値解法とは微分方程式がもつ数学的性質を保存する数値解法であり,複雑さや非線形性の強い問題,超長期軌道計算が必要な問題等の分野では大変重要な数値解法である.しかし定義領域離散化手法が限定的であった.これは任意格子上での離散変分計算を行うことができなかった数学的な事情による.この状況に対しわれわれは自然な数学的拡張により任意凸多角形格子上での離散変分計算を可能とする,この困難を克服する突破口を見出した.自由格子上での数値計算は理想的だが,これまでは同時に数学的性質の多くを失うものであった.これに対し本研究はこの困難を克服し,新しい方向性を創り出せると期待したものである.

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (19 results)

All 2024 2023 2022 2021 2020

All Journal Article (4 results) (of which Peer Reviewed: 4 results,  Open Access: 2 results) Presentation (15 results) (of which Int'l Joint Research: 5 results,  Invited: 1 results)

  • [Journal Article] A modified model for topic detection from a corpus and a new metric evaluating the understandability of topics2023

    • Author(s)
      Kitano Tomoya、Miyatake Yuto、Furihata Daisuke
    • Journal Title

      JSIAM Letters

      Volume: 15 Issue: 0 Pages: 121-124

    • DOI

      10.14495/jsiaml.15.121

    • ISSN
      1883-0609, 1883-0617
    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Composing a surrogate observation operator for sequential data assimilation2022

    • Author(s)
      Akita Kosuke、Miyatake Yuto、Furihata Daisuke
    • Journal Title

      JSIAM Letters

      Volume: 14 Issue: 0 Pages: 123-126

    • DOI

      10.14495/jsiaml.14.123

    • ISSN
      1883-0609, 1883-0617
    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] A second-order accurate structure-preserving scheme for the Cahn-Hilliard equation with a dynamic boundary condition2022

    • Author(s)
      Okumura Makoto、Fukao Takeshi、Furihata Daisuke、Yoshikawa Shuji
    • Journal Title

      Communications on Pure and Applied Analysis

      Volume: 21 Issue: 2 Pages: 355-355

    • DOI

      10.3934/cpaa.2021181

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] A structure-preserving scheme for the Allen?Cahn equation with a dynamic boundary condition2020

    • Author(s)
      Okumura Makoto、Daisuke Furihata
    • Journal Title

      Discrete & Continuous Dynamical Systems - A

      Volume: 40 Issue: 8 Pages: 4927-4960

    • DOI

      10.3934/dcds.2020206

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Presentation] A particle method based on Voronoi decomposition for the Cahn-Hilliard equation2024

    • Author(s)
      Daisuke Furihata
    • Organizer
      Structured Machine Learning and Time-Stepping for Dynamical System
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 平面曲線に関する汎函数最小化問題に深層強化学習を適用するための報酬設計の検討2023

    • Author(s)
      岩瀨 慈恩, 宮武 勇登, 降籏 大介
    • Organizer
      第49回 数値解析シンポジウム
    • Related Report
      2023 Annual Research Report
  • [Presentation] Particle-cluster dynamics model for coarsening process of phase separation phenomenon modeled by the Cahn-Hilliard Equation2023

    • Author(s)
      Daisuke Furihata
    • Organizer
      International Congress on Industrial and Applied Mathematics
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 相分離問題の粗視化のための particle dynamics model2023

    • Author(s)
      降籏 大介
    • Organizer
      第28回 計算工学講演会
    • Related Report
      2023 Annual Research Report
  • [Presentation] Nonlinear difference operator for approximating derivatives2023

    • Author(s)
      Daisuke Furihata
    • Organizer
      2023 Workshop on Numerical Analysis and Image Science
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 非線形差分作用素の近似誤差プロファイルと入力誤差への耐性2022

    • Author(s)
      降籏 大介
    • Organizer
      第27回計算工学講演会
    • Related Report
      2022 Research-status Report
  • [Presentation] A Particle Dynamics Model for Coarsening Process of Cahn-Hilliard Equation2022

    • Author(s)
      Tomoaki Miyatake, Yuto Miyatake, Daisuke Furihata
    • Organizer
      WCCM-APCOM YOKOHAMA 2022 (15th World Congress on Computation Mecchanics & 8th Asian Pacific Congress on Computation Mechanics)
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] Structure-preserving algorithm, optimization problem and applications to nano-particle problems2022

    • Author(s)
      降籏 大介
    • Organizer
      High-index saddleの探索アルゴリズムとその応用
    • Related Report
      2022 Research-status Report
  • [Presentation] particle dynamics model による Cahn-Hilliard 方程式解の粗視化2022

    • Author(s)
      降籏 大介
    • Organizer
      日本応用数理学会2022年年会
    • Related Report
      2022 Research-status Report
  • [Presentation] A particle dynamics model for coarsening process of phase separation phenomenon modeled by the Cahn-Hilliard Equation2022

    • Author(s)
      Daisuke Furihata
    • Organizer
      JSPS seminar 2022 "Topics in computational methods for stochastic and deterministic differential equations"
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] 対数差分をはじめとする非線形差分公式の解析2022

    • Author(s)
      降籏 大介
    • Organizer
      日本応用数理学会研究部会連合発表会
    • Related Report
      2021 Research-status Report
  • [Presentation] 非線形性をもたせた差分による微分近似2021

    • Author(s)
      降籏 大介
    • Organizer
      第26回計算工学講演会
    • Related Report
      2021 Research-status Report 2020 Research-status Report
  • [Presentation] 非線形性差分とその応用2021

    • Author(s)
      降籏 大介
    • Organizer
      日本応用数理学会年会
    • Related Report
      2021 Research-status Report
  • [Presentation] 対数差分とその応用2021

    • Author(s)
      降籏 大介
    • Organizer
      第126回 HMMCセミナー
    • Related Report
      2021 Research-status Report
  • [Presentation] 凸多角形格子上の積分定理とその証明2020

    • Author(s)
      降籏 大介
    • Organizer
      日本応用数理学会年会
    • Related Report
      2020 Research-status Report

URL: 

Published: 2020-08-03   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi