Project/Area Number |
20K20963
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 18:Mechanics of materials, production engineering, design engineering, and related fields
|
Research Institution | Kyoto University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
嶋田 隆広 京都大学, 工学研究科, 教授 (20534259)
|
Project Period (FY) |
2020-07-30 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2021: ¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2020: ¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
|
Keywords | ナノ・マイクロ / 転位 / 自己組織化 / ネットワーク / マルチフィジックス |
Outline of Research at the Start |
本研究では、マイクロ材料へ繰り返し負荷を与えて発現する特有の転位自己組織化構造形成の力学的支配因子を明らかにすることを目的とする。マイクロ試験片に対して繰り返し負荷試験を実施し、透過電子顕微鏡によってその内部構造を特定する。解析によってその支配力学について検討した後、目的の転位ネットワークを実現する試験片を設計し、その成否について検証を行う。
|
Outline of Final Research Achievements |
The purpose of this study is to clarify the formation mechanism of specific dislocation structures in micro-sized materials under cyclic loading, and to create peculiar multi-physics phenomena using dislocations. The results of cyclic loading experiments on a micro-sized specimen showed that a dislocation structure similar to that of the bulk was formed in the central part of the specimen, while a structure influenced by the image force from the surfaces was generated in the region of approximately 1 μm from the surfaces. By utilizing this mechanical effect, we succeeded in creating a dislocation wall in the material. In addition, a paraelectric single-crystal specimen with a micro-sized stress concentration source was prepared and subjected to cyclic loading. The results showed that localized ferroelectricity appeared in the specimen.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では,材料表面の力学的作用と繰り返し負荷を利用して微細材料中に特有の転位構造を形成させることに成功し,原子レベルの欠陥の構造や配置を材料中で制御できる可能性を示した.また,繰り返し負荷を受けた常誘電体材料中の局所に強誘電性を生み出せることを示した.本成果は,欠陥を利用することで現象を生み出す新しい学術分野創成の一翼を担うものであるとともに,これまで不可能とされてきた強誘電体微細化デバイスの実現可能性を示すものであり,社会および産業界へのインパクトは大きい.
|