Design of superhydrophobic organosilica structure and thin layer fabrication of highly selective alcohol permeable membrane
Project/Area Number |
20K21112
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 27:Chemical engineering and related fields
|
Research Institution | Hiroshima University |
Principal Investigator |
|
Project Period (FY) |
2020-07-30 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2022: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2021: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2020: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
|
Keywords | オルガノシリカ / 薄膜 / 超撥水性 / 吸着ブロッキング / 浸透気化特性 / 細孔構造制御 |
Outline of Research at the Start |
本研究では,分子サイズが大きい分子が選択的に多孔膜を透過する分子選択性を付加した機能性高選択透過膜を創製し,バイオエタノール製造プロセスにおけるアルコール濃縮への応用を目指す。水よりも分子サイズが大きいアルコールを多孔膜では優先透過させることはできないため,吸着親和性とネットワークサイズを考慮したアモルファス材料の膜構造設計を提案する。サブナノ細孔における透過モデルで,液体透過性とネットワークサイズを評価し,ネットワーク構造の化学的・物理的性質とアルコール/水透過性を定量化する。
|
Outline of Final Research Achievements |
In the present study, we investigated the effects of pore size and hydrophobicity of organosilica membranes on alcohol selective permeation property using pendant-type organosilica. The pendant-type organosilica structure was too small for alcohol molecules with molecular size of about 0.4-0.5 nm, so that these membranes showed H2O selective permeation properties. F-doping was evaluated to control the loose network structure. F-doping into pendant-type organosilica greatly improved hydrophobicity, but the tendency for the pore size to increase with doped F concentration, which was observed with conventional F-doped bridged organosilica, was not observed.
|
Academic Significance and Societal Importance of the Research Achievements |
地球レベルでの環境負荷が問題となる現在では,持続可能な社会を構築するために新規機能性材料や効率の良い生産方式の開発が極めて重要になる。膜分離工学は,国連が定めた,Sustainable Development Goals(SDGs,持続可能な開発目標)への貢献が大きい学問である。本研究では,薄膜化が可能で有機基の導入やアニオンドープにより親疎水性,細孔径制御が可能なアモルファスシリカを膜材料として用い,分子サイズが大きいアルコール分子が選択的に多孔膜を透過する分子選択性を付加した機能性高選択透過膜の創製について検討した。
|
Report
(4 results)
Research Products
(11 results)