Graphene nanoribbons with large ferroelectricity
Project/Area Number |
20K21126
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 28:Nano/micro science and related fields
|
Research Institution | Kyoto University |
Principal Investigator |
|
Project Period (FY) |
2020-07-30 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2021: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2020: ¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
|
Keywords | ナノ炭素 / 物質創成 / ナノ材料 |
Outline of Research at the Start |
新しい有機強誘電体のモデルとして、ベンゼン(六員環)を一次元に繋いだ炭化水素鎖であるグラフェンナノリボン(GNR)の片方のエッジに電子受容体や電子供与体を付与した電子的非対称型GNRを提案する。この構想の実現ために、我々が世界に先駆けて見出した“生物模倣触媒作用”(H.Sakaguchi, et al., Nature Chemistry, 9, 57 2017)によるGNR気相表面合成法において核心的役割を果たした炭素骨格をベースにして電子供与体・受容体を非対称に結合させた“非対称Z型前駆体”を設計し、大きな強誘電性を持つ非対称型GNRを合成する。
|
Outline of Final Research Achievements |
Conventionally, hydrocarbon-type precursors designed for organic synthesis of asymmetric GNR have succeeded in polymerization, but rearrangement reactions occur during dehydrogenation condensation, so GNR with the desired structure could not be generated. To solve this problem, we designed a new asymmetric Z-type precursor and developed a new organic synthesis method for asymmetric GNR. A molecular design was performed with bromine and boron as precursors and chlorine in the center. This precursor was subjected to head-to-tail polymerization using a Pd catalyst to synthesize an asymmetric precursor polymer. Next, this precursor polymer was subjected to a dehydrochlorination reaction using another Pd catalyst to obtain a partially condensed ring polymer. Furthermore, asymmetric GNR was obtained by performing a dehydrogenation-condensation reaction of the remaining hydrocarbon moiety using DDQ. Based on the above, we succeeded in synthesizing the asymmetrical GNR.
|
Academic Significance and Societal Importance of the Research Achievements |
強誘電性を持つ新しいグラフェンナノリボン(GNR)の合成は、従来炭化水素に限定されていたGNRの化学構造を一新し、非対称性電子構造を生み出すこにより、強誘電性等の新たな物性を付与することが可能となる。本研究で得られた成果は、この新しい機能を創成する道を拓くことに貢献する。
|
Report
(3 results)
Research Products
(6 results)