Development of a method for rapid and aberration-free three-dimensional imaging of dislocations in semiconductor materials
Project/Area Number |
20K21151
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 30:Applied physics and engineering and related fields
|
Research Institution | Tohoku University |
Principal Investigator |
Kozawa Yuichi 東北大学, 多元物質科学研究所, 准教授 (90509126)
|
Project Period (FY) |
2020-07-30 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2021: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2020: ¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
|
Keywords | ワイドバンドギャップ半導体 / ニードル顕微鏡 / 多光子励起 / 3次元イメージング / ニードル顕微鏡法 / 他光子励起 / レーザー顕微鏡 / 窒化物半導体 |
Outline of Research at the Start |
本研究では,次世代の半導体として期待されている窒化ガリウム中に存在する転位を,高速に可視化する新たな技術を確立する.具体的には,ニードル状の光スポットを用いて半導体試料の深さ方向に対して一斉励起を行い,試料からの発光信号に対する波面制御によって深さ情報の抽出を試みる.本研究の実現は,半導体中に存在する転位の3次元分布や分類を迅速かつ詳細に計測することにつながり,次世代の半導体デバイス開発を加速させる可能性を有する.
|
Outline of Final Research Achievements |
In the present study, we developed a novel microscope technique that can promptly acquire three-dimensional images of dislocations in GaN specimens based on laser scanning microscopy utilizing multi-photon excitation photoluminescence. In this imaging technique, a needle-shaped focal spot is used as scanning excitation light and the photoluminescence is converted to an Airy beam, enabling the detection of axial information in the object space as lateral information at the detector plane. Our developed system demonstrated the rapid visualization of internal dislocations of GaN by a single two-dimensional scanning of a light needle without changing the observation plane.
|
Academic Significance and Societal Importance of the Research Achievements |
次世代半導体材料として期待されているGaNは,基板中に形成される貫通転位の低減が喫緊の課題となっている.このような転位の存在はデバイス特性を低下させる要因ともなっており,基板中での転位分布や形状を詳細かつ3次元的に可視化することは,さらなるプロセス開発において極めて重要である.本研究では,GaN中の転移分布を3次元的かつ迅速に可視化する新しい方法を提案した.本研究で得られた成果をさらに発展させることで,基礎研究での応用に加えて生産現場での検査法としての実用化も期待される.
|
Report
(4 results)
Research Products
(10 results)