Constructing theoretical atomic spectra and molecular wave functions on the Schroedinger-level accuracy
Project/Area Number |
20K21182
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 32:Physical chemistry, functional solid state chemistry, and related fields
|
Research Institution | Quantum Chemistry Research Institute |
Principal Investigator |
Nakashima Hiroyuki 認定NPO法人量子化学研究協会, 研究所, 部門長 (80447911)
|
Project Period (FY) |
2020-07-30 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2021: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2020: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
|
Keywords | シュレーディンガー方程式 / 自由完員関数理論 / 理論原子スペクトル / 分子波動関数 / Slater型3,4電子積分 / 原子論的化学概念 |
Outline of Research at the Start |
本研究は、シュレーディンガー方程式の正確な一般解法に基づき、積分変分法によるシュレーディンガー・レベルの高精度理論原子スペクトルの計算と、これを原子基底関数として用いて原子論的化学概念と対応する分子の波動関数を構築する。この計算のため、原子・分子の3,4電子積分の計算法とプログラムの改良、自由度(完員関数)選択法によるコンパクトな波動関数の記述法を発展させる。シュレーディンガー・レベルの理論原子スペクトルは、それ自身が後世に残る財産となる。また、正確な原子の解から構築する分子の波動関数理論は、高精度であると同時に化学的理解に繋がる波動関数を構築することができる。
|
Outline of Final Research Achievements |
We developed the computational theory and program of the variational free complement theory for solving the Schroedinger equations of atoms and molecules. In the application to a carbon atom, the chemical accuracy as absolute solution was obtained even with only small number of freedoms. The excitation energies of various quantum states were also reproduced in a very good correspondence with the experimental Moore’s table. In the application to a C2 molecule, the potential energy curves of the ground and low-lying excited states were accurately calculated and their chemical natures were analyzed along the reaction coordinate based on a local picture.
|
Academic Significance and Societal Importance of the Research Achievements |
量子力学の基礎方程式であるシュレーディンガー方程式の正確な解を求めることができれば、理論によってあらゆる化学現象を予言することができる。本研究では、その正確な解を導く自由完員関数理論に基づき、その変分法の計算に必要な方法論と計算プログラムを開発した。応用は基礎的な原子・分子に限られたが、正確であるだけでなく理解に繋げられる局所的波動関数を計算することができ、その成果は原子の量子状態と分子の化学結合の本質的な理解と発展に繋げられる意義がある。
|
Report
(3 results)
Research Products
(7 results)