Project/Area Number |
20K21469
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 47:Pharmaceutical sciences and related fields
|
Research Institution | Tohoku University |
Principal Investigator |
|
Project Period (FY) |
2020-07-30 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2021: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2020: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
|
Keywords | 連続反応 / クロスカップリング / 遷移金属触媒 / 亜鉛試薬 / ケトン / ワンポット反応 |
Outline of Research at the Start |
本研究では遷移金属触媒を用いたクロスカップリング反応に対して、申請者が最近見出した「配位子の添加のみによって触媒構造の動的変化を惹起し連続反応を制御する方法論」を基盤として、単一のクロスカップリング反応を高度に集積した独自の超効率的ワンポット多段階連続クロスカップリング反応を開発する。本研究により、ステップエコノミー を極限まで追求した高次構造天然物の迅速合成をデモンストレーションし、複雑分子の合成が医薬開発の障壁となる創薬の現状をブレークスルーする革新的な方法論の創出を目指すとともに、遷移金属触媒を利用したワンポット連続クロスカップリング反応の設計に対する新たな概念を提供する。
|
Outline of Final Research Achievements |
Based on our previously developed ketone synthesis by Pd-catalyzed coupling reaction of thioesters and organozinc reagents, we have investigated a novel unsymmetrical ketone synthesis by employing a ligand controlled, Pd-catalyzed one-pot sequential coupling reaction between a dithiocarbonate and two different organozinc reagents. Extensive investigation allowed to develop asymmetrical synthesis of aryl and heteroaryl ketones. A short-step total synthesis of marine tricyclic alkaroid (+)-cylindricine C was achieved by employing the double coupling reaction using highly functionalized organozinc reagents. The total synthesis was then achieved via an acid catalyzed cascade cyclization reaction. In addition, we have developed a novel multicomponent asymmetric 1,3-diketone synthesis.
|
Academic Significance and Societal Importance of the Research Achievements |
本反応は、類似の報告がなく学術的に独創性が高い。また、配位子による触媒の動的制御は他の反応へも応用可能であり、新規連続反応の開発につながることが期待される。さらに、本反応により、中分子領域の高次構造天然物と幅広い誘導体の収束的かつ網羅的な合成供給につながり、医薬資源のマイニング、高次構造天然物、誘導体の迅速合成を基にしたライブラリー構築と構造活性相関研究、また、高次構造天然物をモチーフとする分子プローブの開発を利用した作用機序の解明など、創薬研究に与える波及効果は極めて大きい。
|