• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Principles and Practice of Massively-Parallel Computing Based on Tropical Algebra

Research Project

Project/Area Number 20K21794
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 60:Information science, computer engineering, and related fields
Research InstitutionOsaka University

Principal Investigator

Ino Fumihiko  大阪大学, 大学院情報科学研究科, 教授 (90346172)

Project Period (FY) 2020-07-30 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2022: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2021: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2020: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Keywordsトロピカル代数 / 最適化問題 / 高速化 / アクセラレータ / GPU計算 / 並列処理
Outline of Research at the Start

本研究では,トロピカル代数と呼ばれる新しい代数系に基づく処理を,Graphics Processing Unit(GPU)に代表される計算アクセラレータ上で加速することを試みる.そのために,トロピカル代数の演算規則に基づくプログラミング方法論をライブラリやドメイン特化言語とともに開発し,最短経路問題や整数計画問題などの組合せ最適化問題などの実応用へ適用することで,トロピカル代数系による超並列計算の有用性を示す.

Outline of Final Research Achievements

We tried to develop a fast method for solving combinatorial optimization problems with an emerging algebraic system, called tropical algebraic system, on computational accelerators, such as the graphics processing unit (GPU). In more detail, we developed not only an optimization technique specific to tropical algebraic system but also a data compression/decompression method for accelerating GPU applications executed on thousands of threads. Their effectiveness was evaluated with practical GPU applications, such as all-pairs shortest path search and quantum circuit simulation.

Academic Significance and Societal Importance of the Research Achievements

人工知能技術の隆盛に象徴されるように,GPUによる計算の高速化は技術のブレークスルーに不可欠な手段として定着している.トロピカル代数系に特有の最適化技術は,道路網やSNSだけでなく,生命情報科学における生体配列の解析に対して貢献でき,適用範囲は広い.また,ライブラリとして実現したデータ圧縮技術は,煩雑なGPUプログラミングの労力を軽減でき,超並列計算機による研究開発の敷居を低下できるものと期待される.

Report

(4 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (28 results)

All 2023 2022 2021 2020 Other

All Int'l Joint Research (5 results) Journal Article (6 results) (of which Int'l Joint Research: 4 results,  Peer Reviewed: 6 results,  Open Access: 2 results) Presentation (16 results) (of which Int'l Joint Research: 7 results,  Invited: 1 results) Remarks (1 results)

  • [Int'l Joint Research] 重慶郵電大学(中国)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] University of Nicosia(キプロス)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] University of Strathclyde(英国)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] University of Nicosia(キプロス)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] University of Strathclyde(英国)

    • Related Report
      2020 Research-status Report
  • [Journal Article] A compression-based memory-efficient optimization for out-of-core GPU stencil computation2023

    • Author(s)
      Jingcheng Shen, Linbo Long, Xin Deng, Masao Okita, Fumihiko Ino
    • Journal Title

      The Journal of Supercomputing

      Volume: - Issue: 10 Pages: 11055-11077

    • DOI

      10.1007/s11227-023-05103-8

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Cache-aware volume rendering methods with dynamic data reorganization2021

    • Author(s)
      Ruiyun Zhu, Yuji Misaki, Marcus Wallden, and Fumihiko Ino
    • Journal Title

      Journal of Visualization

      Volume: 24 Issue: 2 Pages: 275-288

    • DOI

      10.1007/s12650-020-00712-4

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Accelerating In-Transit Co-Processing for Scientific Simulations Using Region-Based Data-Driven Analysis2021

    • Author(s)
      Marcus Wallden, Masao Okita, Fumihiko Ino, Dimitris Drikakis, and Ioannis Kokkinakis
    • Journal Title

      Algorithms

      Volume: 14 Issue: 5 Pages: 154-154

    • DOI

      10.3390/a14050154

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] A Data-Centric Directive-Based Framework to Accelerate Out-of-Core Stencil Computation on a GPU2020

    • Author(s)
      Jingcheng Shen, Fumihiko Ino, Albert Farres, and Mauricio Hanzich
    • Journal Title

      IEICE Transactions on Information and Systems

      Volume: E103.D Issue: 12 Pages: 2421-2434

    • DOI

      10.1587/transinf.2020PAP0014

    • NAID

      130007948570

    • ISSN
      0916-8532, 1745-1361
    • Year and Date
      2020-12-01
    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Block Randomized Singular Value Decomposition on GPUs2020

    • Author(s)
      Yuechao Lu, Yasuyuki Matsushita, and Fumihiko Ino
    • Journal Title

      IEICE Transactions on Information and Systems

      Volume: E103-D Issue: 9 Pages: 1949-1959

    • DOI

      10.1587/transinf.2019edp7265

    • NAID

      130007894621

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Reducing the Amount of Out-of-Core Data Access for GPU-Accelerated Randomized SVD2020

    • Author(s)
      Yuechao Lu, Ichitaro Yamazaki, Fumihiko Ino, Yasuyuki Matsushita, Stanimire Tomov, and Jack Dongarra
    • Journal Title

      Concurrency and Computation: Practice and Experience

      Volume: - Issue: 19

    • DOI

      10.1002/cpe.5754

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Accelerating Imbalanced Many-to-Many Communication with Systematic Delay Insertion2022

    • Author(s)
      Hirotoshi Yamada, Masao Okita, Fumihiko Ino
    • Organizer
      23rd International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT 2022)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A One-Shot Reparameterization Method for Reducing the Loss of Tile Pruning on DNNs2022

    • Author(s)
      Yanchen Li, Qingzhong Ai, and Fumihiko Ino
    • Organizer
      IEEE World Congress on Computational Intelligence (WCCI 2022)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 量子回路の反復シミュレーションにおける実行パスの集約による重複計算の排除2022

    • Author(s)
      青山昂生, 置田真生, 伊野文彦
    • Organizer
      情報処理学会量子ソフトウェア研究会
    • Related Report
      2022 Annual Research Report
  • [Presentation] Forループの並列化可能性の判定における穴埋め言語学習の応用2022

    • Author(s)
      西村佳, 置田真生, 伊野文彦
    • Organizer
      情報処理学会量子ハイパフォーマンスコンピューティング研究会
    • Related Report
      2022 Annual Research Report
  • [Presentation] ニューラルアーキテクチャ探索におけるガウス過程回帰の精度向上のためのバギング手法2022

    • Author(s)
      羽田遼音, 置田真生, 伊野文彦
    • Organizer
      電子情報通信学会情報論的学習理論と機械学習研究会
    • Related Report
      2022 Annual Research Report
  • [Presentation] 汎用神経回路シミュレータNESTのGPUによる高速化の検討2022

    • Author(s)
      寺西勇裕, 置田真生, 伊野文彦
    • Organizer
      電子情報通信学会2022総合大会
    • Related Report
      2021 Research-status Report
  • [Presentation] Accelerating GPU-Based Out-of-Core Stencil Computation with On-the-Fly Compression2021

    • Author(s)
      Jingcheng Shen, Yifan Wu, Masao Okita, and Fumihiko Ino
    • Organizer
      22nd International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT 2021)
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] Accelerating a Lossy Compression Method with Fine-Grained Parallelism on a GPU2021

    • Author(s)
      Yifan Wu, Jingcheng Shen, Masao Okita, and Fumihiko Ino
    • Organizer
      12th International Symposium on Parallel Architectures, Algorithms and Programming (PAAP 2021)
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] A Directive-based Approach for Accelerating Large-scale Scientific Applications on the GPU2021

    • Author(s)
      Fumihiko Ino
    • Organizer
      4th International Conference on Artificial Intelligence and Big Data (ICAIBD 2021)
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] ニューロンの球面クラスタリングによる深層ニューラルネットワークモデル圧縮2021

    • Author(s)
      坂本慎, 置田真生, 伊野文彦
    • Organizer
      電子情報通信学会ニューロコンピューティング研究会
    • Related Report
      2021 Research-status Report
  • [Presentation] A Study on Training Story Generation Models Based on Event Representations2020

    • Author(s)
      Jingcheng Shen, Changzeng Fu, Xiangtian Deng, and Fumihiko Ino
    • Organizer
      3rd International Conference on Artificial Intelligence and Big Data (ICAIBD 2020)
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] Integrating GPU Support for FreeSurfer with OpenACC2020

    • Author(s)
      Jingcheng Shen, Jie Mei, Marcus Wallden, and Fumihiko Ino
    • Organizer
      6th IEEE International Conference on Computer and Communications (ICCC 2020)
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] Apache Sparkにおける再計算の暗黙的な省略を考慮した性能予測2020

    • Author(s)
      井上達博, 置田真生, 伊野文彦
    • Organizer
      情報処理学会システムソフトウェアとオペレーティング・システム研究会
    • Related Report
      2020 Research-status Report
  • [Presentation] マルチGPU環境において大規模計算を加速するためのディレクティブ記述手法2020

    • Author(s)
      水津大樹, 沈靖程, 伊野文彦
    • Organizer
      情報処理学会ハイパフォーマンスコンピューティング研究会
    • Related Report
      2020 Research-status Report
  • [Presentation] A Hybrid Sampling Strategy for Improving the Accuracy of Image Classification with less Data2020

    • Author(s)
      Ruiyun Zhu and Fumihiko Ino
    • Organizer
      電子情報通信学会パターン認識・メディア理解研究会
    • Related Report
      2020 Research-status Report
  • [Presentation] MPIプログラムにおける遅延挿入による不規則な多対多通信の効率化2020

    • Author(s)
      山田広俊, 置田真生, 伊野文彦
    • Organizer
      情報処理学会ハイパフォーマンスコンピューティング研究会
    • Related Report
      2020 Research-status Report
  • [Remarks] 大阪大学 大学院情報科学研究科 並列処理工学講座

    • URL

      http://www-ppl.ist.osaka-u.ac.jp/

    • Related Report
      2022 Annual Research Report 2021 Research-status Report 2020 Research-status Report

URL: 

Published: 2020-08-03   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi