Project/Area Number |
20K21881
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 90:Biomedical engineering and related fields
|
Research Institution | Tokyo Medical and Dental University |
Principal Investigator |
Yui Nobuhiko 東京医科歯科大学, 生体材料工学研究所, 教授 (70182665)
|
Co-Investigator(Kenkyū-buntansha) |
有坂 慶紀 東京医科歯科大学, 生体材料工学研究所, 助教 (70590115)
|
Project Period (FY) |
2020-07-30 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2022: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2021: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2020: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
|
Keywords | ポリロタキサン / 超分子 / 生体組織接着剤 |
Outline of Research at the Start |
生体材料と生体組織との吻合部におけるそれぞれの弾性率不一致(コンプライアンスミスマッチ)は、生物学的および材料学的観点から大きな課題となっている。そこで本研究では、接着剤と生体組織間で共有結合を形成しながら、生体組織の伸縮・変形に伴う接着界面での応力集中を自動的に回避する全く新しい機構を有する超分子系生体組織接着剤の設計を目指す。
|
Outline of Final Research Achievements |
In this study, we designed a riboflavin-mediated photocrosslinkable polyrotaxane for anchoring to biological tissues. In the presence of riboflavin, the amino group-modified polyrotaxanes photo-crosslinked and formed hydrogels within 15 minutes. When mouse fibroblasts were cultured on the hydrogels, the cells adhered and spread on the hydrogels. Furthermore, when photocross-linked on the surface of porcine aorta, the amino group-modified polyrotaxanes strongly adhered to the tissue. By applying this, the leakage of fluid from the incision of porcine aorta was successfully stopped. Thus, photocrosslinked polyrotaxane has the potential to be applied to repair and regeneration of biological tissues as a tissue-adhesive biomaterials based on supramolecules.
|
Academic Significance and Societal Importance of the Research Achievements |
生体材料と生体組織との吻合部におけるそれぞれの弾性率不一致(コンプライアンスミスマッチ)は、生物学的および材料学的観点から大きな課題となっている。例えば人工血管の場合、コンプライアンスミスマッチが大きいほど血流に擾乱が生じ、血栓形成や内膜肥厚が誘発される。また血流や血管収縮など連続的な繰り返し応力負荷による吻合部の疲労破壊や断裂が懸念される。ポリロタキサンは生体組織間で強く結合しながら生体組織の伸縮・変形に柔軟に追従することによって、接着界面での応力集中を自動的に回避する全く新しい機構を有する生体組織接着剤として期待できる。
|