• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Superconvergent HDG methods for the biharmonic equation

Research Project

Project/Area Number 20K22300
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 0201:Algebra, geometry, analysis, applied mathematics,and related fields
Research InstitutionUniversity of Tsukuba

Principal Investigator

Oikawa Issei  筑波大学, 数理物質系, 准教授 (10637466)

Project Period (FY) 2020-09-11 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords数値解析 / HDG法 / 重調和方程式
Outline of Research at the Start

最近,hybridizable discontinuous Galerkin (HDG) 法では超収束スキームの研究が進んでいる.HDG法における超収束とは,ある種の誤差に関して,メッシュサイズに関する収束オーダーが本来の近似能力を上回るということを意味する.本研究では,重調和方程式に対して,数学的な立場から超収束するHDG法の開発と理論解析を行う.

Outline of Final Research Achievements

We studied the superconvergence of the hybridizable discontinuous Galerkin method (HDG) for the biharmonic equation. Using the idea of introducing a hybrid variable for the gradient of the exact solution, we obtained a new HDG formulation. Numerical experiments of the method were carried out, and we observed that the orders of convergence in three of the four variables were optimal.

Academic Significance and Societal Importance of the Research Achievements

本研究では重調和方程式のHybridizable Discontinuous Galerkin (HDG) 法の超収束性の研究を数学的な立場から行い,一定の成果を得た.HDG法の研究において超収束性は主要なテーマであるため,学術的な意義があると考える.さらに,本研究の結果は将来的により優れた偏微分方程式の数値計算手法の開発へとつながることが期待できる.

Report

(3 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • Research Products

    (1 results)

All 2021

All Journal Article (1 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 1 results)

  • [Journal Article] An analysis on the penalty and Nitsche's methods for the Stokes?Darcy system with a curved interface2021

    • Author(s)
      Zhou Guanyu、Kashiwabara Takahito、Oikawa Issei、Chung Eric、Shiue Ming-Cheng
    • Journal Title

      Applied Numerical Mathematics

      Volume: 165 Pages: 83-118

    • DOI

      10.1016/j.apnum.2021.02.006

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research

URL: 

Published: 2020-09-29   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi