Superconvergent HDG methods for the biharmonic equation
Project/Area Number |
20K22300
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0201:Algebra, geometry, analysis, applied mathematics,and related fields
|
Research Institution | University of Tsukuba |
Principal Investigator |
Oikawa Issei 筑波大学, 数理物質系, 准教授 (10637466)
|
Project Period (FY) |
2020-09-11 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 数値解析 / HDG法 / 重調和方程式 |
Outline of Research at the Start |
最近,hybridizable discontinuous Galerkin (HDG) 法では超収束スキームの研究が進んでいる.HDG法における超収束とは,ある種の誤差に関して,メッシュサイズに関する収束オーダーが本来の近似能力を上回るということを意味する.本研究では,重調和方程式に対して,数学的な立場から超収束するHDG法の開発と理論解析を行う.
|
Outline of Final Research Achievements |
We studied the superconvergence of the hybridizable discontinuous Galerkin method (HDG) for the biharmonic equation. Using the idea of introducing a hybrid variable for the gradient of the exact solution, we obtained a new HDG formulation. Numerical experiments of the method were carried out, and we observed that the orders of convergence in three of the four variables were optimal.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では重調和方程式のHybridizable Discontinuous Galerkin (HDG) 法の超収束性の研究を数学的な立場から行い,一定の成果を得た.HDG法の研究において超収束性は主要なテーマであるため,学術的な意義があると考える.さらに,本研究の結果は将来的により優れた偏微分方程式の数値計算手法の開発へとつながることが期待できる.
|
Report
(3 results)
Research Products
(1 results)