• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Asymptotic analysis of Burgers-type equations with spatial anisotropy in higher dimensions

Research Project

Project/Area Number 20K22303
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 0201:Algebra, geometry, analysis, applied mathematics,and related fields
Research InstitutionShinshu University

Principal Investigator

Fukuda Ikki  信州大学, 学術研究院工学系, 講師 (60882214)

Project Period (FY) 2020-09-11 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2021: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
KeywordsBurgers型方程式 / 一般化KPB方程式 / 一般化ZKB方程式 / 散逸・分散型方程式 / 解の漸近挙動 / 時間減衰評価の最良性 / 空間異方性 / 分散-散逸型方程式 / KP-Burgers方程式 / ZK-Burgers方程式 / BBM-Burgers方程式 / 高次漸近形
Outline of Research at the Start

本研究では, 空間高次元における分散項付きのBurgers型方程式の初期値問題について, 特に移流効果及び分散効果や散逸効果に空間異方性のある方程式の解の漸近挙動の解析に取り組む. 具体的には, それらの方程式の解の漸近挙動について, 解の時間減衰評価や漸近形の導出, 及びその漸近形への漸近レートの最適性に関する考察を行う. 特に, 方程式の空間異方性が解の挙動に与える影響に着目し, 初期値の空間方向別の重み付きエネルギー法などを用いて, 時間無限大における解の構造を理論的に明らかにする. これらの研究により, 高次元のBurgers型方程式に対する新たな解析手法の確立を目指す.

Outline of Final Research Achievements

In this study, we mainly considered the large time behavior and decay estimates for solutions to the generalized KP-Burgers equation and the generalized Zakharov-Kuznetsov-Burgers equation, in two dimensions. In particular, in two dimensions, the interaction between dispersion term and dissipation term induced by the spatial anisotropy of the equation has an essential effect on the structure of the solution. As a result, we showed that a unique decay rate appears in the decay estimates of the solution. Moreover, we derived an approximation formula for the solution and used it to prove the optimality for the decay estimates. In addition, as a preparation for these analyses, we also analyzed some one-dimensional Burgers equations with dispersion term and clarified the effect of the shape of the dispersion term on the large time behavior of the solution.

Academic Significance and Societal Importance of the Research Achievements

本研究では, 分散項付きのBurgers型方程式を扱ったが, それらはいずれも非線形波を記述する方程式であり, その理論の整備は数学としても現象の解析としても重要である. 今回, 一般化KP-Burgers方程式と一般化Zakharov-Kuznetsov-Burgers方程式, 即ち空間異方性のあるBurgers型方程式の研究では, 分散型方程式と放物型方程式の両者の手法を組み合わせて解析したことで, 既存の評価と全く異なるものが得られることを見出した. これは, 散逸・分散型方程式に対する解の長時間挙動の理論の深化に繋がったと考えられ, 今後のこの分野のさらなる発展への貢献が期待できる.

Report

(4 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (19 results)

All 2023 2022 2021 2020

All Journal Article (4 results) (of which Peer Reviewed: 3 results,  Open Access: 1 results) Presentation (15 results) (of which Int'l Joint Research: 2 results,  Invited: 11 results)

  • [Journal Article] Large time behavior and optimal decay estimate for solutions to the generalized Kadomtsev-Petviashvili-Burgers equation in 2D2023

    • Author(s)
      Ikki Fukuda, Hiroyuki Hirayama
    • Journal Title

      Nonlinear Analysis

      Volume: 未定 Pages: 1-23

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Large time behavior of solutions to the Cauchy problem for the BBM?Burgers equation2022

    • Author(s)
      Fukuda Ikki、Ikeda Masahiro
    • Journal Title

      Journal of Differential Equations

      Volume: 336 Pages: 275-314

    • DOI

      10.1016/j.jde.2022.07.020

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Higher-order asymptotic profiles of the solutions to the viscous Fornberg-Whitham equation2021

    • Author(s)
      Ikki Fukuda, Kenta Itasaka
    • Journal Title

      Nonlinear Analysis

      Volume: 204 Pages: 112200-112200

    • DOI

      10.1016/j.na.2020.112200

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] 粘性Fornberg-Whitham方程式の解の高次漸近形2021

    • Author(s)
      板坂健太, 福田一貴
    • Journal Title

      北海道大学数学講究録

      Volume: 180 Pages: 387-396

    • Related Report
      2020 Research-status Report
    • Open Access
  • [Presentation] 一般化KP-Burgers方程式の初期値問題の解の長時間挙動と最良な減衰評価について2023

    • Author(s)
      福田一貴, 平山浩之
    • Organizer
      日本数学会2023年度年会
    • Related Report
      2022 Annual Research Report
  • [Presentation] Large time behavior and optimal decay estimate for solutions to the generalized KP-Burgers equation in 2D2022

    • Author(s)
      福田一貴
    • Organizer
      九州関数方程式セミナー(オンライン開催)
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] Large time behavior and optimal decay estimate for solutions to the generalized KP-Burgers equation in 2D2022

    • Author(s)
      福田一貴
    • Organizer
      大阪大学微分方程式セミナー
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] Large time behavior and optimal decay estimate for solutions to the generalized KP-Burgers equation in 2D2022

    • Author(s)
      福田一貴
    • Organizer
      第781回応用解析研究会(早稲田大学)
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] On the optimal decay estimate for solutions to the generalized KP-Burgers equation in 2D2022

    • Author(s)
      福田一貴
    • Organizer
      北海道大学偏微分方程式セミナー(オンライン開催)
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] BBM-Burgers方程式の初期値問題の解の漸近挙動2022

    • Author(s)
      福田一貴, 池田正弘
    • Organizer
      日本数学会2022年度秋季総合分科会
    • Related Report
      2022 Annual Research Report
  • [Presentation] 粘性Fornberg-Whitham方程式の解の高次漸近形2022

    • Author(s)
      福田一貴
    • Organizer
      日本数学会2022年度年会(アブストラクト提出)
    • Related Report
      2021 Research-status Report
  • [Presentation] Higher-order asymptotic profiles of the solutions to the Burgers equation with a fractional dispersion term2022

    • Author(s)
      福田一貴
    • Organizer
      第13回名古屋微分方程式研究集会(オンライン開催)
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] 非整数階分散項を伴うBurgers方程式の解の漸近挙動2021

    • Author(s)
      福田一貴
    • Organizer
      南大阪応用数学セミナー(オンライン開催)
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] 高次元におけるBBM-Burgers方程式の解の漸近挙動2021

    • Author(s)
      福田一貴
    • Organizer
      半田山偏微分方程式研究集会(オンライン開催)
    • Related Report
      2021 Research-status Report
  • [Presentation] 非整数階分散項を伴うBurgers方程式の解の漸近挙動2021

    • Author(s)
      福田一貴
    • Organizer
      大同大学第2回若手微分方程式セミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Effect of a fractional dispersion term on the asymptotic behavior of the solutions to the Burgers type equations2021

    • Author(s)
      Ikki Fukuda
    • Organizer
      The 22th Northeastern Symposium on Mathematical Analysis (Online)
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 粘性Fornberg-Whitham方程式の解の高次漸近形2020

    • Author(s)
      福田一貴
    • Organizer
      京都大学NLPDEセミナー(オンライン開催)
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Higher-order asymptotic profiles of the solutions to the viscous Fornberg-Whitham equation2020

    • Author(s)
      福田一貴
    • Organizer
      第168回神楽坂解析セミナー(オンライン開催)
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Asymptotic behavior of solutions to the damped wave equation with a nonlinear convection term2020

    • Author(s)
      Ikki Fukuda
    • Organizer
      Nonlinear Wave Seminar (Online)
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2020-09-29   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi