• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on invariants and invariant differential operators on CR manifolds

Research Project

Project/Area Number 20K22318
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 0201:Algebra, geometry, analysis, applied mathematics,and related fields
Research InstitutionThe University of Electro-Communications (2021-2022)
Institute of Physical and Chemical Research (2020)

Principal Investigator

Marugame Taiji  電気通信大学, 大学院情報理工学研究科, 准教授 (50872983)

Project Period (FY) 2020-09-11 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
KeywordsCR多様体 / Einstein計量 / アンビエント計量 / CR不変量 / CR不変微分作用素 / CR幾何学 / 不変微分作用素
Outline of Research at the Start

この研究では、強擬凸領域上のCheng-Yau計量に代表される漸近的複素双曲(ACH)Einstein計量と呼ばれる完備計量を利用して、無限遠境界であるCR多様体の大域的不変量や不変微分作用素を構成し、それらの性質を調べる。特に、Cheng-Yau計量の特性形式の漸近解析を通して得られる不変量を考察し、CR多様体上の放物型幾何との関連を明らかにする。また、Cheng-Yau計量とは異なるACH Einstein計量を考察し、CR不変微分作用素の構成へ応用する。

Outline of Final Research Achievements

I studied on constructions of geometric invariants and invariant differential operators on manifolds endowed with CR structure, which is a geometric structure modeled on real hypersurfaces in a complex manifold. As a result, I found some possible ways to generalize the construction via complete Einstein metric or ambient metrics. In particular, I obtained a refinement of the ambient metric associated with three dimensional CR manifolds by uisng inhomogeneous ambient metric in conformal geometry and gave another proof to the fact that CR three-manifolds admit CR GJMS operators of all orders.

Academic Significance and Societal Importance of the Research Achievements

不変量や不変微分作用素の構成は微分幾何学,特にCR幾何学において基本的な問題であり,
複素解析などの他分野との結びつきも深い.また,構成において異なる幾何構造間の対応関係をうまく利用する点も興味深く,基礎研究としての意義がある.

Report

(4 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (5 results)

All 2022 2021

All Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (3 results) (of which Invited: 2 results)

  • [Journal Article] The Bonnet theorem for statistical manifolds2021

    • Author(s)
      Taiji Marugame
    • Journal Title

      Information Geometry

      Volume: 4 Issue: 2 Pages: 363-376

    • DOI

      10.1007/s41884-021-00056-4

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Renormalized characteristic forms of the Cheng-Yau metric and global CR invariants2021

    • Author(s)
      Taiji Marugame
    • Journal Title

      Advances in Mathematics

      Volume: 377 Pages: 107468-107468

    • DOI

      10.1016/j.aim.2020.107468

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Presentation] Constructions of CR GJMS operators in dimension three2022

    • Author(s)
      丸亀泰二
    • Organizer
      複素解析幾何セミナー
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] The Cheng-Yau metric on strictly pseudoconvex domains and global CR invariants2021

    • Author(s)
      丸亀泰二
    • Organizer
      阪大幾何セミナー
    • Related Report
      2021 Research-status Report
  • [Presentation] Cheng-Yau計量の特性形式とCR不変量2021

    • Author(s)
      丸亀泰二
    • Organizer
      第63回函数論シンポジウム
    • Related Report
      2020 Research-status Report
    • Invited

URL: 

Published: 2020-09-29   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi