Project/Area Number |
20K22405
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0301:Mechanics of materials, production engineering, design engineering, fluid engineering, thermal engineering, mechanical dynamics, robotics, aerospace engineering, marine and maritime engineering, and related fields
|
Research Institution | National Institute of Technology, Toyota College |
Principal Investigator |
Kaminaga Maho 豊田工業高等専門学校, 機械工学科, 助教 (20879986)
|
Project Period (FY) |
2020-09-11 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 切削加工 / 濡れ性 / 微細加工 / マイクロ流路 / 細胞 / マイクロ流路デバイス / 切削 |
Outline of Research at the Start |
本研究は,切削や3Dプリントによるマイクロ流路デバイス作製における課題である,加工面の表面微小形状の粗さを流体制御に利用することで,高機能な細胞実験デバイスを作製することを目的とする.表面微小形状と濡れ性の関係を調査し,それをもとにポンプ等の外部装置を用いない流体制御の手法を確立する.さらに,それを利用して培養細胞を用いた実験を行うためのマイクロ流路デバイスを作製し,その機能を確認する.
|
Outline of Final Research Achievements |
Cutting can be used in the fabrication of microfluidic device molds to produce large devices suitable for handling three-dimensional cultured cells. However, the rough surfaces of the workpieces increase the resistance and cause fluid residues, making it difficult to control the fluid flow. The changes in wettability due to changes in surface microstructure during machining were investigated, and it was found that the feed rate and the direction of cutting affected the water contact angle. Based on these results, the wettability of microfluidic devices could be changed to create hydrophobic and hydrophilic surfaces, which could be applied to fluid control in the future.
|
Academic Significance and Societal Importance of the Research Achievements |
マイクロ流路デバイスは,環境の詳細なコントロールや実験の自動化が可能であり,生物分野の研究に広く用いられている.大型の細胞塊や組織を使用した現実に近い実験を行うためには,切削加工により大型のデバイスを作製する必要があるが,加工面が荒いために管路抵抗の増加や液残りが発生しやすく,流体を制御しづらいという課題がある.そこで,本研究では切削加工の短所の影響を小さくすることを目的とし,切削条件を変えた場合の水接触角と算術平均粗さを調べた.今回の調査結果をもとにして,大型のマイクロ流路デバイスを容易に作製できれば,生物実験の効率化につながることが期待できる.
|