Development of self-healing stretchable conductors and textile sensors
Project/Area Number |
20K22411
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0302:Electrical and electronic engineering and related fields
|
Research Institution | The University of Tokyo |
Principal Investigator |
Okutani Chihiro 東京大学, 大学院工学系研究科(工学部), 特任研究員 (60876449)
|
Project Period (FY) |
2020-09-11 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 伸縮性導体 / コンポジット材料 / 転写プロセス / プリンテッドエレクトロニクス / 修復ポリマー / 印刷 / 転写 / 自己修復 |
Outline of Research at the Start |
ヒトの身体やロボットの関節などの伸びる部位にも追従可能な、伸縮する電子デバイスを実現するには、デバイス同士をつなげる伸縮性導体が必要である。伸縮性導体の実用化にあたり、繰り返し伸縮に対する耐久性が課題である。伸縮性導体は伸縮を繰り返すうちに、断線してしまう。この損傷を回復できる機能をもつ、伸縮性導体を開発できれば、デバイス寿命がのび、実用化に大きく貢献できる。本研究では自己修復機能をもつ伸縮性導体を伸縮基材上に形成し、導体が繰り返し伸縮による破損を修復できるかを評価する。さらに開発した伸縮性導体を布地に実装することでテキスタイルセンサを作製し、長期センシングの実現性を明らかにする。
|
Outline of Final Research Achievements |
In this research, we synthesized self-healable polymers and developed a stretchable conductive ink by mixing polymers, conductive materials, and organic solvents and achieved the patterning by printing. In addition, by focusing on the fact that the healable polymers self-adhere to each other, we prepared healable materials on the surface of silicone rubbers with low adhesiveness, and used the transfer process to transfer the conductive material onto the healable polymer substrate. In particular, by setting the temperature to around 40°C in the transfer process, we succeeded in creating the structure in which the conductor was embedded within the healable polymer substrate.
|
Academic Significance and Societal Importance of the Research Achievements |
同じ修復性高分子材料を含んでいる基材と導体を、柔らかいシリコーンゴム基板を介して熱圧着することで、基材と導体が強い密着性を持ちつつ、導体が基材内に埋め込まれた、表面が平坦な電極を形成できた。この密着性の高い、平坦で埋め込まれた構造は、機械的な耐久性を向上させるのに有用であることがわかったので、ウェアラブルデバイスやソフトロボティクスへのさらなる応用における、耐久性の高い伸縮性電子デバイスの開発に役立つと考えられる。
|
Report
(3 results)
Research Products
(5 results)