Project/Area Number |
20K22461
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0401:Materials engineering, chemical engineering, and related fields
|
Research Institution | Tohoku University |
Principal Investigator |
Li Hongyi 東北大学, 金属材料研究所, 特任助教 (80876706)
|
Project Period (FY) |
2020-09-11 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | インターカレーション型正極 / 協奏的相互作用 / デュアルカチオン / 金属負極 / 溶媒和構造 / 蓄電池 / 蓄電池材料 / スピネル酸化物 / 第一原理計算 |
Outline of Research at the Start |
次世代蓄電池を実現するには,既存の枠にとらわれない新たなアプローチが不可欠である.Li-Mgデュアルカチオン電池は,2種類のキャリアカチオンを同時に電極反応に参加させることによって,従来の単一キャリア系では解決し難い課題に対して打開策を提示した.本研究課題では,Li-Mgデュアルカチオン電池の実用化に向け,正極材料候補を熱力学・速度論の両面から探査し,高性能を有する正極材料の設計指針を確立することを目指す.本研究は,応用面だけでなく,遷移金属化合物の組織制御学やイオン伝導を扱う固体イオニクスにも新たな知見をもたらし,学術の発展に貢献することが期待できる.
|
Outline of Final Research Achievements |
Dual-cation batteries, in which two carriers (e.g. lithium and magnesium) are used together, have the potential to solve the inherent problems of conventional batteries that use a single carrier. In this study, we investigated the composition range in which two carriers can coexist in a cathode and examined the performance of the electrode materials. In particular, we used manganese dioxide polymorphs, which have various typical crystal structures, as model cathodes and considered suitable structures for the coexistence of carriers. In parallel with the study of the cathode, we also investigated the electrodeposition and dissolution behavior of metal anodes in the dual-cation electrolyte and found that the deposition morphology of the metal anodes can be controlled by the solvation structure modification in the dual-cation electrolyte.
|
Academic Significance and Societal Importance of the Research Achievements |
エネルギー・環境問題を解決するため,再生可能エネルギーの導入拡大と自動車の電動化が推進されている.蓄電池技術はその中核の1つであり,高性能化と低コスト化が期待されている.現行のリチウムイオン電池はすでに理論上の限界を迎えており,新規蓄電池技術の開発には新しい設計方針が必要である.本研究は2つのキャリアを併用する蓄電池系の構築に向け,反応過程の基礎的理解を深め,イオン伝導現象や,酸化物の相平衡や構造制御や,金属負極の形態制御に関して知見を得た.これらの知識は新規蓄電池の実現につながることを期待する.
|